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Abstract. We study the Sinai model for the diffusion of a particle in a one-dimensional quenched
random energy landscape. We consider the particular case of discrete energy landscapes made of
random+1 jumps on the semi-infinite lind* with a reflecting wall at the origin. We compare the
statistical distribution of the successive local minima of the energy landscapes, which we derive
explicitly, with the dynamical distribution of the position of the diffusing particle, which we obtain
numerically. At high temperature, the two distributions match only in the large time asymptotic
regime. At low temperature however, we find even at finite times a clear correspondence between
the statistical and dynamical distributions, with additional interesting oscillatory behaviours.

1. Introduction

The problem of the diffusion of a particle in a one-dimensional quenched random energy
landscape has been studied for many years [1, 2]. If the landscape itself has a random walk
statistics, many exact predictions exist for thag-time behaviouof the diffusion process.
For an unbiased statistics of the potential, i.e. in the absence of drift, the average disjance
travelled by the particle grows very slowly at large times, with the Sinai scaling behaviour
(x) ~ (TIn(r))?, whereT is the temperature [2]. The asymptotic probability distribution
is universal in the scaling variabke/(T In())? and its precise form is known exactly for a
single diffusing particle [3-5]. Moreover, the thermal dispersion (or the distance between two
diffusing particles in the same random potential) remains finite at large times [6]. The physical
picture underlying these results is simply that dbealizationof the diffusing particle in the
deepest energy minimum which it can reach at tir®y passing larger and larger energy
barriers [6, 7].

These large time asymptotic predictions were tested numerically by computiegabe
probability distribution for the positiom of the particle at finite but large enough timefor
energy landscapes drawn at random, and then averaging over a large enough sample of such
landscapes [8—10]. One should notice that the Sinai scating- (7 In(r))? defines a very
slow diffusive process. For such a process, the long-time behaviour is expected to be reached in
practice after extremely long transients, especially at low temperature. Such times can be out
of reach in practical situations or in finite time numerical simulations. This probably explains
why the asymptotic predictions are not fully recovered in [8]. In any case, very little is known
about the finite-time behaviour of the model or about the approach to the asymptotic regime.
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In practice, the localization of the particle in the deepest minimum has the nice consequence
that some of theynamicalproperties of the diffusion process can be deduced directly from the
correspondingtatistical properties of the minima of the random potential. More precisely,
the underlying idea is to assume that, at times of orcdehe particle is localized in the
deepest minimum of the energy landscape which it could reach by passing all the energy
barriersA E of height less or equal tb ~ T In(z). The time dependence of various quantities
in the dynamical process can then be obtained from the equilibstatisticsof the energy
minima and its dependence in the highest passable energy barridhis idea has been
implemented recently to develop a new real space renormalization group (RSRG) approach
for the Sinai model [11]. The RSRG formalism consists in performing a suitable decimation
of the barriers with height less thdhto obtain universal renormalization group equations
for the variation with increasing’ of the effective energy landscape distribution seen by
the particle at the timescale Long-time properties are obtained from the— oo fixed
point of these RSRG equations. This technique allows us to recover the universal asymptotic
probability distribution of a single particle for various boundary conditions. It also allows for
the prediction of asymptotic two-time or two-particle correlations.

Following the above ‘statistical picture’ leading to the exact asymptotic predictions, one
may wonder whether this picture could also help to investigate shorter times or very low
temperatures. In this paper, we test the connection between the dynamical properties of the
diffusion process and the statistics of the minima of the energy landscapes for finite times.
We use a particular distribution of the disorder where the energy landscapes are made of
successive randontl increments, i.e. have the statistics ofliacreterandom walk. The
reason for this choice is twofold. On the one hand, we can easily dexplecit laws for the
statistics of minima at arbitrary (even smadll) On the other hand, this is particularly adapted
to numerical simulations of the dynamical process. As we shall see, our results corroborate
the statistical picture, not only at larffevhere we recover the universal distributions expected
for general random energy landscapes with a random walk statistics, but also af smdll
low temperature, where the discrete nature of the energy landscapes is sensible and yields
interesting behaviours.

The paper is organized as follows. In section 2, we briefly describe the patrticle diffusion
process and the distribution for the random energy landscapes. In section 3, we derive explicit
formulae for the statistics of energy minima in the presence of energy barriers of arbitrary
scaleI". Section 4 presents numerical results for the dynamical diffusion process. These
results are compared with the predictions of the statistical approach of section 3. We gather
our conclusions in section 5.

2. Diffusion of a particle in a discrete random energy landscape

We consider the following discrete distribution for the quenched energy landscapes. On each
sitex =0, 1, 2, ... labelled by a non-negative integer, we associate a random energy variable
E(x) such that (see figure 1)

E0) =0

AE(x)=E(x+1) — E(x) = +1.
The signt1 of the incrementis drawn at random between successive sites with even probability
%, i.e. we introduce no drift in the problem. With the choice (2.1), the values of the energy are
limited to integers, meaning that we have implicitly fixed an underlying energy scale. We can

view E (x) as the ‘height’ at site of a discrete random walk describing our energy landscape.
We finally setE (—1) = +o0, i.e. put aninfinite reflecting wall on the negative side of the origin,

(2.1)
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Figure 1. A discrete random energy landscapér). A reflecting wall prevents the particle from
exploring the negative region. The particle jumps to the left or to the right with the probabilities
given by equation (2.2).

while we keep a free boundary conditionsat= +oo. This choice of boundary condition is
clearly not crucial but makes our analysis simpler since in this case, deeper minima always
appear at increasing valuesxaf

For a given realization of the quenched random energy landscape, we consider the
following discrete time dynamical process.

— We start at time = 0 at positionx = 0 with energyE (0) = 0.
— Given the positione with energyE (x) at timet, the position at time + 1 is
e*ﬁAE(X)

—BAE(x) + @BAE(x—1)
NS (22)

@ BAE(x) + gBAE(x—1)
with AE(x) asin (2.1) angg = 1/T the inverse temperature.

x +1 with probability p, =

x —1 with probability ¢, =

With the choice (2.1) for the variation of the energy on neighbouring sites, theratip.

is equal to 1 if the two sites + 1 andx — 1 have the same energy, or to éx2/T) if they

have different energies. Note that the case 0 is special withpg = 1 — go = 1. Note also

that the particle has to move to one of its neighbouring sites at each time step, i.e. we do not
allow the particle to remain at the same site. As a consequence, the particle occupies sites
with even position at even times and sites with odd position at odd times. This effect results
in ‘residual fluctuations’ even & = 0. The above model is very simple since it depends on
only one parameter, the temperatdte We study its behaviour numerically in section 4 but

let us first derive explicit laws for the minima of energy landscapes with the discrete random
walk statistics (2.1).

3. Statistics of energy minima

In this section, we forget for a while the dynamical process and focus on the statistics of the
successive minima of the random energy landscapes which can be reached in the presence of
increasingly passable energy barriers. Following [11], we consider for any given realization of
the energy landscape the positioa= xmin(I") of thedeepesminimum of this landscape which

can be reached, starting from the wall at the origia 0, by passing through energy barriers

of heightless or equato a fixed scalé’. Herexmin andI” are non-negative integers. For each

", we compute the probabilityr (x) thatxmin(I") equalsx, obtained by averaging the quantity

8y xmn(y OVer all realizations of the energy landscape. Note that, for a given realization, the
deepest reachable minimum is not necessarily unique but can be degenerate. We will thus
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Figure 2. For a strip of heighl” = 1, the random walk is a series 8f = 0 — 1 — 0 two-step
sequences. To obtaim® (z), each two-step sequence must be dressed with a fabieridz) in
the middle.

consider three different probabilitigs” (x), p? (x) andp® (x), corresponding respectively

to the following prescriptions in case of degeneracy:

(1) we keep only the closest minimum to the origin,

(2) we keep only the furthest minimum from the origin,

(3) we take the average over all the degenerate minima, i.e. consider the quantity
(1/k) Xoi_1 8, . for k degenerate minima at positiaff) .

We shall give below explicit formulae for the generating functions

o0
PG =Y p )z i=123 (3.1)
x=0

3.1. Random walk in a strip of height

Before we proceed, we need to evaluate the probahilit) for a random walk starting
at E(0) = 0 to have itsx first steps inside the strip & E < I' and its(x + 1)th step
at E(x + 1) = —1, i.e. the probability for the walk to leave the strip for the first time just
after positionx and downwards. We recall here the explicit form of the generating function
Dr(z) = ), dr(x)z*. In the following, we will always assume that tle+ 1)th step points
downwards, which in practice occurs with probabil%tyi.e. we will calculate Dr(z) instead
of Dr(z).

The functionDr(z) satisfies the recursion relation:

1
Dr(z) = 2 22Dr 1 (2)
with the initial condition Dy(z) = 1 (for ' = 0, the first exit from the zero-width strip
occurs necessarily just after= 0). This relation can be understood as follows (see figure 2):
consider the cas€ = 1, for which the random walk is necessarily of even lengthnd
made of the repetition of /2 elementary two-step sequences of the type{0 — 1 — 0).
Each two-step sequence comes with a fagtdn the generating function and occurs with a
probability (3)2, leading to,

o0 2\ % 1
2D4(z) = Z (%) = 1_—(5)2 (3.3)

x=0
xeven

(3.2)



Statistical and dynamical properties of the discrete Sinai model 449

in agreement with (3.2) anfig(z) = % The generating function2-(z) can be obtained
in the same way by replacing the weight/2)? for the elementary two-step sequence by a
weight(z/2)? x 2Dr_1(z), corresponding to inserting between the two stps 0 — 1 and

E =1 — 0 an arbitrary sequence of steps limited to the strip of withth1, 1< E < T (see
figure 2). Making this replacement in (3.3) directly leads to (3.2).

From (3.2), we can write the generating functibp(z) as the ratio:
Pr(z)
Pr+1(2)
where Pr(z) is an even polynomial of degreel2f2] in the variablez. Indeed, writing
Dr(z) = Pr(2)/0Qr(2), (3.2) gives

Dr(z) =

(3.4)

Prz) _ 1 _ Or-1(2) (3.5)

Or(z 2- zzﬁ 2Q0r-1(z) — 22Pr_1(2) .
leading to recursion relations

Pr(z) = Qr-1(2) (3.6)

Or(2x) = 20r1(z) — 2Pr-1(2).
Eliminating Or, we get the announced result (3.4), with, moreover, the recursion relation

Pra1(z) — 2Pr(z) + 2°Pr_1(z) =0 (3.7)
which determines(z) from the initial valuesPy(z) = 1 andP1(z) = 2. Setting
2 r 2
Pr(2) =" Ur (—) s Uurm=(3) Pr (—) (38)
z 2 y

the above recursion relation transforms into

Ur+1(y) = yUr(y) + Ur_1(y) =0 (3.9)

with Ug(y) = 1 andU;(y) = y. The solution of this recursion is given by the well known
Chebyshev polynomial8r(z), characterized by

Ur(2coshy)) = %h;)l)t) (3.10)

We thus get the explicit form:

1 _ 1 sinh((T" + 1)r)
Fr (cosm)) "~ (cosh))T  sinh(r) (3.11)
and the explicit formula:
. 1 _ sinh((T" + 1)1)
Dr (z = COSl”(t)) = Cosm)—sinh((l" 20 (3.12)

The relation betweeDr(z) and the Chebyshev polynomials is also derived in [12] in the
context of the Temperley-Lieb algebra. In the limit> 0, we get the particular result
r+1
r+2
which is the probability for the walk to leave the striplOE < I' downwards at' = 0 rather
that upwards a& = I'. In the limitI’ — oo, we have
oo 1—A/1—72

Dr(z) o Z—ZZ (3.14)
which, up to normalizations, is the generating function of Catalan numbers, counting closed
walks on the semi-infinite lin& > 0, as it should.

Dr(1) = (3.13)
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3.2. Explicit forms oP? (z)

We now come to the evaluation of the generating functi@ﬁé(z) defined by (3.1). Given
an arbitrary landscape of infinite length and for a givenwe have to look for the deepest
minimum which can be reached by passing barriers of height less or equalltodo so, we
decompose the random walk defining the landscape according to the following algorithm:

(1) Starting atvg = 0 andE (xg) = 0, the walk has a first part entirely included in the strip
of widthT", 0 < E < I'. In this part, the last return @& = 0 occurs at some position
(possibly 0). This defines a first building block of size

(2) Sincex; is the last return aE = 0 within the strip of sizé", two situations may occur for
the remaining part of the walk:

(2-1) Either the walk reaches = I' + 1 without returning taE = 0, i.e. the walk leaves
the strip upwards. In this case, we have reached a barrier which is too high to be
passed and we stop the process.

(2-2) OrE(x; +1) = —1, i.e. the walk leaves the strip downwards. In this case we repeat
the process 1, i.e. starting at positien+ 1 with E(x; + 1) = —1, we consider the
following part of the walk entirely in the strip of height —1 < E < I' — 1 and look
for the positionx, of the last return t&F = —1 within this strip, defining a second
block of sizex, — x1 — 1. We repeat the process until it is stopped by a barrier which
is too high. The numbef of building blocks is simply related to the height-1£ of
the deepest minimum which could be reached. The position of this minimum can be
obtained by properly summing the sizes of the blocks.

This algorithm is illustrated in figure 3. To compuR’(z), we simply have to assign
a weight 2r(z) per building block and a factoz/2) for each descending bond between
building blocks. The different prescriptions in the case of degenerate minima concern only
the last building block. In cas@) of the closest minimum to the origin, the size of this block
does not contribute to the positiap,i, of the minimum. This block thus comes with a factor
of one. Summing over the numbé&nf blocks, we deduce thalﬁl)(z) is proportional to (see
figure 3(1)):

1

1—zDr(2)’

The normalization factor is fixed by demanding tﬁ#t) (1) = 1since, for = 1, the generating
function gives the probability to find the minimum at some arbitrary positiowe thus get:
1-Dr(1)
1-zDr(z)
Note that from the previous subsection, we can also understand the prefaetby-11) as

the probability for the random walk to eventually leave the strip of Bizgwards rather than
going downwards. For the prescription (2), where we choose the furthest minimum from the
origin, we have an extra facto®-(z) for the last building block. We thus get in this case (see
figure 3(2)):

2
PP «1+2Dr@) 5+ (2Dr@)7) +-o = (3.15)

PO () = (3.16)

2
P(2) & 2Dr(2) + 2Dr(2)52Dr(2) + (2Dr ()5 ) 2Dp () + -+ = % (317)
and

Dr(2) y 1-Dr (D)

Dr(1) © 1—zDr(z)’

The difference between cases (1) and (2) is thus simply a prefégtar)/Dr(1) coming
from the last building block. This factor is nothing but the generating functigrer (x)z*

Pﬁa (z) = (3.18)
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Figure 3. A schematic picture of the decomposition of random walks into building blocks. The
number€ of building blocks is related to the height-1€ of the deepest minimum reached without
passing a barrier of size greater tHanFor the different building blocks, we have also indicated the
weights obtained by the average over the random walks to reconstruct the appropriate generating
functionPl(f). These weights depend on the precise prescription for degenerate minima: (1) keep
the closest minimum to the origin; (2) keep the furthest minimum from the origin; (3) average over
the minima.

associated with the probabiligf- (x) to find the furthest minimum at a distaneefrom the
closest minimum.

The prescription (3), where we average over all minima in the case of degeneracy is more
subtle. Here again, it concerns only the weight of last building block and leads to a different
prefactor. Suppose we hawer 1 degenerate minima, each minimum will receive a weight
1/(k +1). For the(m + 1)th minimum among thé + 1, we have to assign a factoonly to
the elementary steps of the walk which are to the left of the minimum while the steps which
are to the right do not contribute ”,‘; D and receive a factor 1 instead. Still the right part
of the block is important to guarantee that the total number of minima is precisely The
generating function between successive minima is thus simply 2(z)(z/2)? on the left side
of the chosen minimum andlzr,l(l)(%)2 on its right side (see figure 3(3)). The prefactor
associated with the last block is now proportional to

21 (& (2Dra(@)\" (Droa()\ "
Yoz (2) (7))

k=0 m=0

1 1— 22Dr_1(2)
= In 2
22Dra(@ _ Dra@) 1— DLra@d
2 2 2
_ 20r@Dr@ | (Dr (Z)>
Dr(z) — Dr(1) Dr(1)

(3.19)
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where we have used (3.2). We finally get

Dr(z) In (Dr(z)> 1-Dr(1)
Dr(z) — Dr(1)  \Dr(D 1-2zDr(z)
by adjusting the normalization to guarantee tﬁfﬁ)(l) = 1. Note that, as for (3.18), the

prefactor involves only a function dbr-(z)/Dr(1).
The formulae (3.16)—(3.20) can be made more explicit by use of (3.12), leading to

(3.20)

PR(2) =

PO ( 1 ) _ L sinh((T" + 2)r)
r “coshr))  T+2 7 sinh(T +2)r) — sinh((T" + 1)r)

p@ (. _ 1 1 cosh(r) sinh((I" + 1)¢)
r\T cos}‘(t)) T+l sinh((T + 2)7) — sinh((T" + 1)¢)

PO (. _ 1 . coshr) sinh((I" + 1)¢) (3.21)
r <Z - cosk(t)) ~ sinh((T" + 2)7) — sinh((T" + 1)7) '

n I' + 2 coshr) sinh((I" + 1)¢)
X
r+1 sinh((I" + 2)1)
sinh((T" + 2)t)
X . - .
(I" + 2) cosh(z) sinh((I" + 1)¢) — (I" + 1) sinh((T" + 2)¢)
These expressions constitute our central result describing the statistics of minima at finite
for the particular distribution of landscapes that we study.
At largeT’, an appropriate scaling limit can be obtained by a suitable scaling of

s . V2s 1
Z:].—E l.e. IZT'FO(E) (322)
This corresponds to setting
x=T2 (3.23)

in the original probabilitiespl@(x). In this limit, the three generating functior??é") tend to

the same limiting distributio.. (s), equal to

tanh(+/2s)
Poo(s) = ————. 3.24
NG (3.24)
This distribution is now the Laplace transform
Pools) = / d poc (e (3.25)
0
of the limiting probability density
Poo(l) = lim r2p@(x =T1?) i=1,223 (3.26)
From (3.24), we get
pooll) = 3 & B (3.27)
k=0

The formulae (3.24) and (3.27) are actually more general and valid for all the distributions
of the energy landscape which have a random walk statistics, i.e. tend to a Brownian motion
distribution in the continuum. These laws can be derived directly by use of the RSRG formalism
developed in [11]. They appear there as the lardixed point of RSRG equations describing

the flow withT" of similar renormalized probability distributions. Here, we have made explicit
the wholel” dependence of these probabilities in the special case of an energy landscape made
of discretet+1 increments.
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The nice feature of the formulae (3.24) and (3.27) is that they are precisely those derived
in [3] for the limiting probability distribution of the dynamical process itself in its large time
scaling regime. In this case, the natural scaling variablesiso?x/ In?(r), whereo = 2/T
is directly related to the expectation value of(p,/1 — p,). We thus recover here the
asymptotic equivalence between the statistics of minima and the dynamical process, with the
precise correspondente= In(z)/o. Such a relation, valid in principle only for large times,
will be tested in section 4 at shorter times.

Finally, let us mention that a similar computation of the generating function at finite
can be performed for landscapes without wall at the origin. The treatment of the degeneracies
is, however, more involved in this case with even more different possible prescriptions. Still,
the limiting distribution at largd™ is independent of the chosen prescription. One can also
introduce a drift in the problem when drawing the random landscapes. For instance, choosing
in (2.1) AE(x) = 1 with probability p and A E(x) = —1 with probabilityg = 1 — p, we get
for, say,Pﬁl) the expression

1—29Dr(v/4pq)
1-29zDr(v/4pqz)’
Different regimes are obtained according to sigrpof ¢, and to whethep — ¢ is of order
one (strong bias) or of ordey I" (weak bias).
To end this section, let us evaluate the first correctioRtds) by further expanding the

formulae forP" in powers of ¥ T'. We get

i) _ N _ a(i) tanl’(\/z_s) Cl(i) 3 1
Py (z_ 1— E) = <1— T) T+? 1-— mtanh’-(\/z) +0( 5

Pﬁl) (2) = (3.28)

(3.29)

witha® = 2,a® = 1andz® = 2. The above 1T corrections are probably notuniversal, i.e.
they depend on our particular choice for the statistics of landscapes. Still; thedkrection

to the relative differences(P? — P)/P” and (PY — PP)/P" should be universal.
Indeed, they involve the proportionality factors between the diffeva??t i.e. the factor
Dr(z)/Dr (1) in (3.18), or the factoDr(z)/(Dr(z) — Dr(1)) In(Dr(z)/Dr(1)) in (3.20).

As we already mentioned)r(z)/Dr (1) is the generating function for the probability (x)

to have the furthest minimum at a distancdérom the closest. The proportionality factors
above thus concern thielativedistance between the different degenerate minima, and ignore
their absolute position. They are the important statistical quantities to be used when one is
interested in the localization property of the dynamical process. If we insist on imposing the
scaling (3.22) appropriate to absolute positions, we get; ferl — s/ I'?

Dr(z) 1 1
ot =T (1 — x/Z_scoth(x/Z_s)) +0 <ﬁ>

Dr(2) In(Dr(z)> 1(1—«/Zcoth(\/5)>+0<1).

(3.30)

=1+= —
Dr(z) — Dr(1) Dr(1) r 2 r2
At large T, the factors (3.30) above tend to one. This does not mean that degenerate minima
disappear in this limit. Indeed, one can easily compute the probability for having ekactly

degenerate minima, equal to

Droa(D) (Dra@®)' _ T+2 roy
(1_ 2 )( 2 ) T2+ (2(r+1)> ‘ (3:31)

Degeneracies, therefore, exist even at ldrgehere the above expression tends(%c)/”l.
However, most of these degeneracies occur at short distances, and not at distances of order




454 J Chave and E Guitter

I'?. Relative distances of ord&? are found only with a probability of ordeyT". The /T
corrections above correspond to situations with exaettydegenerate minima at a distance of
orderI"?, as corroborated by the fact that averaging over minima gives half the value obtained
by keeping the furthest minimum. Situations with three or more degenerate minima would
contribute to higher ordersiryIT". AtlargeT’, the scaling (3.22) is therefore not appropriate to
deal with the relative position of degenerate minima. As noticed in (3.14), a non-trivial large
I' exists forDr(z)/ Dr (1) without rescaling ofz, involving the Catalan generating function.
Expanding (3.14) i, we obtain

) 0 if x odd
er@) Sey=1 oxt (3.32)
2715 + D! '

If we admit that relative distances between degenerate minima are the appropriate statistical
quantities to describe the distance between two diffusing particles, this result without scaling
of x at large times agrees with the idea of localization [6]. Still, as explained in [10], the
distributione(x) behaves likee(x) ~ x~%2 at largex. Therefore, its moment&®) diverge

for o > % This divergence comes precisely from the rare configurations (occurring with
probability 1/ T") with two minima at a distance of ord€f. They contribute t@x®) by a term

(T'?)#/T = I'*~ which diverges at largg for « > 3 (see [10]).

3.3. Average position of the minimum

From the formulae for the generating functio‘ﬁ’é”(z), it is straightforward to get the

average positior’(I") and average squared positlo_?{l)(l“) of the minimum for the three
prescriptions:

4 ) . d .
TOT) = (@) - (i)
x(I) XE_Oxpr (x) =1z az ZZlPr (2)

o o 4\2 (3.33)
—5( _ 2 @Dy _ 0
ﬂ<”—§fpﬂﬂ—e£>Ffﬂn

Expanding (3.21) in powers af— 1 aroundz = 1 (or in powers of aroundr = 0), we get

2r2+5+3
f(l)(r) - - =
2
7(2)(1-) — 2r +37F +3 (3.34)
2r2+6r+3
7(3)(1*) - - =
3
and
—2(1)(1_) 16I'* + 883 + 174% + 14T + 45
X =
4 3 15 2
— 160" + 104 + 2260< + 179 + 45
22 = = (3.35)
29 167 + 9613 + L2012 + 163 + 45
X = 15 .
All of them lead to the same largeasymptotic formulae
—(i) r l'z/oo 2F2
* 1) 3 (3.36)

—5 () '—-oo 4
X2y <7 e
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This asymptotic behaviour involves only the scaling variabl€? and the exact prefactors can
be directly obtained from the limiting distribution (3.24) by a suitable expansieraiound
s = 0. We have in particular the asymptotic relation

X2~ 2@ (3.37)

Here again, the difference for the subleading terms in (3.34) and (3.35) for the three
prescriptions comes from landscapes with two degeneracies separated by a distanc&éf order
Such configurations, occuring with probabilityl/ T, yield a correction of ordeF?/I" =T
tox(I") and a correction of orddr*/I" = I'® to )7(1"). For these situations with exactiywo
effective degenerate minima, it is equivalent to take the average over the minima (prescription
(3)) and to average over the closest and the furthest minimum (prescriptions (1) and (2)).
This explains why the subleading coefficient in the prescription (3) is exactly the average
of the subleading coefficients of prescriptions (1) and (2). Situations with three degenerate
minima distant from~I"? occur with probability~1/T'? and influence the sub-subleading
coefficient. Note also that the constant term in (3.34) and (3.35) must be the same for the three
prescriptions since, fdr = 0, there cannot be any degeneracy of the deepest minimum. The
above arguments explain wiy® (I) is exactly the average a® (I") andx®(I") and why

—(@3 . —(1 —(2
<2 )(F) differs form the average o' )(F) andx?' )(F) by a term of ordei™? only.
In order to have a precise measure of the subleading terms, we introduce the quantity
—5(0)
20 = x2 Iy
T ®BE )y
with a factorlg2 chosen to eliminate the leading larfegerm, so thay}” ~ 1/T tends to zero

at largeI’. Remarkably, in the case (3), an extra cancelation occurs, Iead'pq@t& 1/T72
In the following section, we compare this quantity, as computed from (3.34) and (3.35), with
a similar quantity defined for the dynamical model.

(3.38)

4. Dynamics

4.1. Simulation

Beside the above theoretical statistical predictions, we have made a numerical study of the
dynamics (2.2) of a particle for a large sample of quenched random potentials drawn to satisfy
the relations (2.1).

For each drawn landscape, we calculate the probal#lity, r) that the particle sits at
positionx at timer. Due to the discrete nature of the landscape, it is possible to make an
exactenumeration of all the possible walks arriving at a given positi@t some time, and
to evaluate their probability deduced from (2.2) for the particular chosen landscape.

A more efficient way to implement this enumeration is to calculae, r) exactly step
by step in time from the master equation

PO, t+1) = paP(x — 1,0) + e P(x + 1, 1) (4.1)

with p, andg, = 1 — p, the probabilities of jumping from site respectively to the right and
to the left, as defined in (2.2), with in particulag = 1 — go = 1 and with the convention
p—1 = 0. The master equation is supplemented by the initial condion 0) = §, 0. The
computed probability? (x, 7) is then averaged over all the energy landscapes of our sample
(the sample size is 2@nergy landscapes for most simulations).

At any finitet, itis clear that the particle cannot reach a position ¢, henceP (x, t) = 0
exactly for allx > ¢. The normalization of the probability requires that. P(x,) = 1 at
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any timer. In practice, the probability to occupy sites far from the origin is extremely low. To
reduce the computation time, we drop the normalization condition and replace it by

Y Px.)>1-¢ (4.2)

wheree « 1. Therefore, instead of describing the complete accessible landscapewtsize

at timer, we fix the maximal size at a much smaller valueccfuch that the condition (4.2)

is fulfilled for all our energy landscapes. Of course, the choice of this size depends crucially
on the temperatur@ and on the number of iterations. In practice, we take- 0.01 for

most simulations and we check that this simplification does not lead to significant errors. The
computation time is significantly reduced for low temperatures, since the effectively visited

landscape is of much smaller size. With this simplification, we were able to study the dynamics
up to 10 iterations for low-temperature regimes {for 7 = 2).

Note that for our particular choice of dynamics, the particle cannot stay at the same site
for two consecutive timesandr + 1. ThusP(2x +1, 2t) = P(2x, 2r +1) = 0. As we already
mentioned, the net effect of this parity condition is to create residual fluctuations, which persist
even atl = 0, where barriers of height = 1 can always be passed. This will explain in
particular why, af’ = 0, some equilibration can take place between all the deepest minima
accessible by passiig= 1-barriers. In the following subsections, we always present results
for times of a well-defined (even) parity.

Itis instructive to visualize the typical evolution &f(x, ) with time for a fixed landscape
before making the quenched average over our sample of landscapes. Figure 4 shows such
an evolution with 10 iterations. One clearly sees that the regions with a large probability of
occupation are concentrated around local minima of the potential.ifkseases, these high
density regions migrate to deeper minima. The duration of occupation of a local minimum in
logarithmic scale is roughly proportional to the height of the energy barrier on its right.

4.2. DistributionP (x, 1)

Let us first present our numerical results for the distributiam, 7). We will use overbars to
denote the average over our sample of landscapes, while bracketd denote the thermal
average estimated from the probabiliB(x, ) computed for a fixed landscape. We are
interested here in the average distributiBix, ) at a large enougfixed time. From the
asymptotic largd” results (3.26) and (3.36), we expect that, at latge

- 2 2 x
(XN P(x, 1) 3P~ (3m(t)) (4.3)
with ps, given by (3.27).

Figure 5 shows our results fa@r = % and different values of. The agreement with the
asymptotic exact formula is apparently very good. To have a better quantitative evaluation of
how close we are to the asymptotic result, we will study in the next section the first and second
moments of the distribution. As we shall see, significant deviations do actually exist, some of
which can be well explained by our finité corrections to the asymptotic statistics. We will
also discover some interesting underlying oscillatory behaviours.

4.3. Results for the first and second moments and comparison with the statistics of minima

We present here our numerical results for the average positign) and average squared
position (x2)(¢) for varying timer and at various temperatures. We first checkx#)(r)
and ((x)(¢))? obey the expected asymptotic relation (3.37) with a proportionality falétor
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Figure 4. Evolution with time (in logarithmic scale) of the distributidh(x, ¢) in a given energy
landscape (drawn below). The evolution runs ovefitérations. The intensity in the greyscale is
proportional to— In P(x, ), i.e. darker regions correspond to higher value® of, ).

Note that for a purely diffusive system in a homogeneous medium (i.e. in a flat energy
landscape) wheréx)(t) ~ +/t, a similar relation holds, but with a smaller proportionality

factorm /2.
Figure 6 presents the corresponding data for several temperaturefffor%]to T =2.

For the range oﬁz presented here, the asymptotic formula (3.37) and the more complete
statistical relations obtained from our finifepredictions by eliminating® between (3.34) and
(3.35) do not differ significantly. We therefore expect, if the dynamics follows the statistics

of minima, that the asymptotic linear relation is verified in the whole rang(?)gf This is
precisely what we observe at low temperatures (béfow 1). In this regime, a more refined
analysis will reveal very interesting underlying oscillatory behaviours, as emphasized below.
At high temperatures (aboZe ~ 1), we see a significant deviation from the expected law, with

a behaviour closer to a purely diffusive regime at sr(ﬂf. Still, even atT = 2 (see inset in
figure 6), the correct slope is eventually recovered at Iﬂze In this range of temperatures,

the observed deviation is not explained by our fifiteorrections to the asymptotic lapy,,
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Figure 5. The rescaled average distributian) (t) P (x, ) as a function of the rescaled variable
x/{x)(t) atT = % and for various values of the time= 1000, 5000, 10 000, 50 000 and 100 000.
The full line indicates the exact asymptotic formula as given by (4.3) and (3.27).
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Figure 6. A numerical check of the relation (3.37). The full line has the sl@expected from
(3.37) while the broken line has the slopg2 expected for the normal diffusion is a flat landscape.

ForT = 2, a broader window oﬁz (see inset) is needed to recover the asymptotic law.
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In(t)

Figure 7. The quantity'(¢) as defined by equation (4.4) f@r = %) to T = 2, as a function of

In(r). The full lines show the corresponding fits of equation (4.5) for the average linear growth
of the curves remaining after discarding the superimposed oscillations. The use of the complete
formula (4.4) is necessary to obtain the correct position of the fit at low temperatures. At high
temperature = 2 in the inset), the fit (4.5) is better if we defifiér) by the asymptotic formula

L@~ /0.

but is more simply the effect of a short-time diffusion regime in which the particle does not
yet feel the random potential. Such a regime will last until the particle reaches a distance
such thatE (x) ~ /x ~ T, i.e. up to a transition time ~ x? ~ T4,

For a comparison of our data with the statistics of minima of the previous section, we need
to consider, instead of the first and second moments, more refined quantities which in practice
contain exactly the same information but are more adequate for our purposes since they clearly
emphasize the finit€ corrections. Anticipating our conclusions, we focus on the statistics
(3) which corresponds to an averaging over degenerate minima. Inverting the formula (3.34)

for the prescription(3), we consider instead @k)(¢) the equivalent quantity:

—3+/3+6(x)(1)
2

such thatt® (I'(r)) = {x)(t). The quantityl'(s) is thus an estimate of the effective height
of the barriers which can be passed at the timescalbtained by matching the first moment
measured in the dynamical process with the average position of the minima resulting from the
formula (3.34) in cas€3).

Figure 7 showd'(¢) as a function of Ix¢) for different values of the temperature. At low
temperaturel’(¢) oscillates around an average straight line and develops plateaieggr
values ofl". These plateaus are of course a signature of the underlying discrete nature of the
landscape, and are an indication of the actual relation between the dynamics and a process of
passing increasing discrete barriers. This effect disappears at higher temperatures. Discarding
these oscillations, the curves have an average linear growth with a slope directly proportional

e = (4.4)
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to the temperature. More precisely, we can reasonably fit this average linear growth by the
formula (see figure 7: for the oscillating curves, the fits reasonably match the maxima of the
oscillations)

T t
L) = > In <t0> +1 (4.5)
with In(zp) ~ 4. The proportionality facto% = T /o betweer"(¢) andT In(z) is that expected

from the correspondence between statistics and dynamics in the asymptotic limit, as already
discussed. At low temperature and shorter times, this correspondence is still reasonably good,
apart from the superimposed oscillations. The additive constant 1 in (4.5) can be understood
as the effect of the ‘residual fluctuations’ which remaifat 0 from the parity condition and

make the barriers of heiglit = 1 always passable. To obtain the correct position of the linear

fit, we definitely had to use the complete formula (4.4), which presents a sl‘ri-ﬁ%omth

respect to the asymptotic relatiohr) ~ ,/(%)E(r) obtained from (3.36). This reflects the
importance of the finitd corrections at low temperatures. For higher temperature, however
(T = 2), we obtain a better scaling with the asymptotic law without shift (see the inset in
figure 7, full triangles) than with the shift (empty triangles). Again at high temperatures, the
deviation from the asymptotic limit is not explained by finitecorrections alone.

We now analyse our data for the second monedjt(r). Here again, we prefer to consider
the more adequate quantity

(x2)@®)
() ((x) (1))
0.1
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Figure 8. The quantityx (r) defined by equation (4.6) as a function Iofr) for temperatures
ranging from7T = % to T = 2. The full curve shows the statistical estimaq@(l“) as defined by
equation (3.38). The cross in the inset indicates the small correctidhs=al to this statistical

value due to parity effects, as computed in appendix A. The broken line in the lower inset indicates
the value ofy for pure diffusion in flat landscape.
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copied from (3.38) to measure the deviation from the asymptotic regime (3.37).

Figure 8 presents our results fpfr) versud (¢), and a comparison with the corresponding
statistical relation calculated from the previous section betvxé%randI‘. We again recover a
low-temperature regime with oscillations and a high-temperature regime without oscillations.
In this high-temperature regime, the asymptotic limit is reached very slowly and the short-
time dependence is different from the finitepredictions for the statistics of minima. The
subleading short time corrections to the universal asymptotic behaviour are thus different from
that predicted by the statistics of minima. At low temperature, however, the oscillations of
are peaked around integer value$'ofnd sharpen as the temperature decreases to zero. In this
limit T — 0, the height of the peaks tend precisely to the valugr(?.}fat the corresponding
integer. We thus recover our predictions for the statistics of minima, which strictly speaking
are valid only for integer values of the barrieér We also observe two additional dynamical
effects.

— Between two consecutive integer valdes- 1 andI’, we find a transition regime with a
strong depletion of. We interpret this effect as resulting from a period of equilibration
of the particle passing from the statistics of minima at s€ale1 to that at scal€'.

— As the temperature increases, the peaks are rounded and their maxima slowly move to
lower values ofy. The peaks eventually disappear at high temperature.

We interpret the above results as follows. From formula (4.5), the barriers of hieayit
passed at times of orde(T") ~ roexp[2T" — 1)/ T]. After passing these barriers, we admit
that the time needed for equilibration in the (always present) degenerate minima is itself of the
order of a multiple of (I"). As the temperature is lowered, the corresponding proportionality
factor remains finite due to the residual fluctuations. During the equilibration process at a
givenT, the data get closer to the equilibrium distribution of the minima. The time needed to
pass the next barriers, i.e. those of height 1 is from (4.5):(I" + 1) = #(I') exp(2/T), that
is again a finite multiple of (I"), depending only on the temperature. In the low-temperature
regime, the particle thus has enough time to equilibrate and recover the statistics of minima for
a fixed passable heightbeforeit starts passing the barriers of height 1. Conversely, at high
temperature, the particle keeps finding better and better minima by passing increasing barriers
without equilibration for each passéd In particular, the particle does not feel the discrete
nature of the potential. This results in the suppression of the oscillations and a behaviour closer
to normal diffusion.

In the above analysis, the use of statist{8s is crucial on the one hand to get peaks
precisely at integer values ®f(+) and on the other hand to recover the theoretical value of
x (I') at the peak for low temperatures. These conditions eliminate the two other statistics.
At this level of precision, the purely asymptotic result= 0 is also ruled out. As discussed
in appendix A, statisticg3) itself must be modified by very small corrections due to parity
effects, i.e. the fact that the particle at timeannot sit right at the correct minima if those
happen to have a parity different from This effect is sensible only for the peaklat= 1.

The corresponding correction is calculated in appendix A and leads to a very small reduction
(~3.5%) of the peak (see figure 8), consistent with the data of the dynamical process. The parity
correction is more important for quantities which measure the localization of the particle, as

we discuss in the next section. The use of a different dynamics allowing the particle to remain
at the same site should suppress this correction.
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4.4, Localization

In order to have an idea of how localized is the particle, we have measured the probability
second moment:

Ya(t) = (P(x, 1) 4.7)

which estimates the probability that two independent particles evolving in the same quenched
potential arriveexactlyat the same site at time This quantity is similar to the participation ratio

for localized quantum particles [13]. A non-zero valug’gfs the signal of a localization. We
must, however, distinguish between two different effects which run counter to this localization
and therefore loweY,: the effect of temperature which broadens the distribution of a particle
around its average position in a minimum, and the existence of several degenerate minima in
which the particles can fall. It is this last effect that we measure at very low temperatures. If
we assume that, wheh — 0, the particle is localized exactly in the deepest minima at scale
I'(¢), we estimate,(¢) by

e S LY ro\
2()_§:k+1ar+n<ar+n)

k=0 (4.8)
_r+2m(ar+n>
T r+2

with T = I'(¢). In the formula above, we used probability (3.31) to have exactlyl
degenerate minima, weighed by probability(d+ 1) to have the two particles in the same
minimum. In practice, as we already noticed, formula (4.8) must be corrected to account
for the parity effects of the dynamics. At lardg this simply amounts to redud® by a
factor(I' +2)/(2I' + 3) + (%) x (I +1)/(2r + 3) sinceY, must typically be divided by 2 if
the minima have the wrong parity (which occurs with probabiiity+ 1)/(2I" + 3) for even
times, see appendix B) and the particle has to sit on the two neighbours of the minimum.
With this estimateY,(¢) thus tends at large timeF' (t) — o0) to a finite value(%) In2. The
same formula (4.8) with the above reduction factor also gives a good estimate af'small
with for instance a valug, ~ (132) In(%) ~ 0.69 atT" = 1. In appendix B, we present a
detailed analysis of the exact corrections for the statistical modekatl, leading to a value
Y, ~ 0.706 415.

Figure 9 shows our numerical results #61(r) as a function of (z). Atlow temperatures,
we recover peaks at integer valuedofAt low temperatures, the value of the peaKat 1
is in perfect agreement with the estimate in appendix B and our results are consistent with a
localization of the particle in all the degenerate minima. At high temperattyé3,decreases
with time but still tends to a finite value at lar@e apparently proportional to/T'. We have
also measured the more usuamyi entropyH,(1) = —In(}_, P?(x,t)) [9]. In contrast
with Y,, which is an average value over the disorder, exig}] gives thetypical value of the
probability for two particles to be at the same site at tim&\Ve find that expfF H»] and Y,
display the same behaviour and differ by a roughly constant multiplicative factor.

Another quantity of interest for the measure of the localization of a particle is the dispersion,
defined by

AX(1) = (¥2) (1) — ((x)(1))2. (4.9)

If the particle were localized in a single minimum, the disperstor? () would not grow
indefinitely with time (or withl") but rather would reach a finite limit. The situation is quite
different if, as we expect, the particle is localized in several degenerate minima since, as we
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Figure 9. The quantityY>(¢) as defined in equation (4.7) as a functionlf) for temperatures
ranging from7" = % to T = 2. The horizontal bar is the value of the peak estimated in appendix B
from the statistics with parity corrections.
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Figure 10. The quantityAx2(z) (in logarithmic scale) as defined in equation (4.9) as a function of
I'(¢) (in logarithmic scale) for temperatures ranging fr@m= 1—10 to T = 2. The horizontal bar
indicates the value of the peak estimated in appendix B from the statistics with parity corrections.
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already mentioned, minima can be separated by a distance ofitrdéth a probability / T.
In this case Ax? grows like(I'?)2/T" = I'® and is thus infinite asymptotically.

Figure 10 shows our numerical results fax?(¢) as a function ofl’(¢) in logarithmic
scales. At low temperatures, the peaksiof(¢) follow the statistics3) of the degenerate
minima, with the additional parity corrections, as computedfet 1 in appendix B. We thus
recover a regime of localization in all the degenerate minima. At high temperanirég,)
increases rapidly with time, with a scaling compatible with the expelcfetependence.

5. Conclusions and discussion

We have studied the problem of the one-dimensional diffusion of a particle in a semi-infinite
quenched random energy landscape dititreteinteger heights and for different temperatures
T. Our data converge to the expected large time universal asymptotic limit, but very slowly
(as Y Inr) and the approach to this limit crucially depends on temperature. To quantify the
finite-time corrections, we have compared our numerical data for the diffusion process at time
t with exact results for the statistics of the local minima of the landscapes reached by passing
energy barriers of increasing (integer) sizeBelowT ~ 1, we find a low-temperature regime
in which the dynamical process precisely follows the statistics of minima which corresponds
to average over all the degenerate minima at a given §caith the expected correspondence
I' < TInt. Our data are consistent with a localization of the particle equally distributed in
all these degenerate minima. Interesting transition regimes interpolate between integer values
of the scald”. At higher temperatures abo%e~ 1, the approach to the asymptotic laws does
not follow the finitel" corrections to the statistical laws, at least in the regime of times that we
consider in our simulation.

We interpret these two different regimes as follows: at sifialhe particle has enough
time to equilibrate and recovers the statistics at a givdyefore it starts passing barriers of
heightsl” + 1. At high temperatures however, the particle keeps passing barriers of increasing
I" without having enough time for equilibration at a fixed

A natural question is whether the existence of two regimes is only a finite-time effect, or
whether it persists for larger times. In the first case, the correspondence between the dynamics
and the statistics should be recovered at larger times. In the second case, itis tempting to expect
atransition temperature between the two regimes. The low-temperature regime would anyway
be a consequence of an underlying discrete cut-off for the steps of the energy landscape. The
transition temperature would thus be of the order of this cut-off and would tend to zero in the
continuum limit where only the high-temperature regime would persist.
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Appendix A. Corrections due to residual fluctuations atT" = 0

We will concentrate here on our statist{8%, which consists in averaging over all the degenerate
minima with equal probability, that is, in the casé&afegenerate minima, in assigning a weight
factor 1/ k to each minimum. This statistics implicitly assumes that, after a transition period
of equilibration, each degenerate minimum is visited with even probability.
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For our particular choice of dynamics, however, the particle is not allowed to remain at
the same site for two consecutive timeandr + 1. As we already mentioned, this results in a
parity condition, namely that the particle occupies even sites at even times and odd sites at odd
times. Thus, even & = 0, the particle has to fluctuate from odd to even sites. This is what
we called ‘residual fluctuations’, which in particular make barriers of heighkt 1 always
passable, even & = 0, eventually leading to some equilibration between all the deepest
minima accessible by passing thése- 1-barriers.

Another effect of these residual fluctuations is that, by preventing the particle to remain
seated rightin the minima for all times, they create small corrections to the estimates of statistics
(3), in particular for the limiting values of the peaksfat— 0 of the quantitieg, Y» and Ax?.

As we will now discuss, these corrections are of two types: a parity correction and a wall
correction.

Parity correction. Let us consider a timewith a given parity, say even, so that the particle

is forced to occupy sites with the same parity. For a fixed landscape and d*fiked clear

that all the degenerate deepest minima have a well-defined, common parity since returning
to the same height requires an even number of steps. This parity, however, may or may not
be that ofr. If the two parities coincide, then the particle can fallfat> 0 precisely in the
minima and our calculations using statist{8% are valid. If the two parities do not match, the
particle cannot fall right in the deepest minima, but will rather occupy the two neighbouring
positions on both sides of each minimum. In this case, rather than averaging the p(x#mons

m = 1,...,k of thek minima with weights 1k, we should average the position§’ + 1

with weights ¥/ (2k) (of course, if two minima are distant by two elementary steps only, the
point in between should receive a weighit{2k) + 1/(2k) = 1/k). What is the probability for

the minima to have the wrong parity? Looking at, say, the closest minimum, we can select the
even minima by considering the CombinatiGPfal) (z) + Pf})(—z))/Z and the odd minima by
considering(Pﬁl) (z) — Pﬁl)(—z))/Z instead. The probability for a minimum to be even or odd

is thus

1 r+2
Proba(even minimay =(P" (1) + PP (1) = ——
2 2 +3 (A1)
1 r+1 ’
Proba(odd mini PP -PP(-1) = :
roba(odd minimay= 2(7’r 1) — P (-1) T3

As far asx is concerned, it is clear that the parity shift creates no correction sififds
precisely the average of”) — 1 andx " + 1. Forx2, however, it results in a shift by a factor:

min
L a2z Lo
> o7 (G = D+ g + D?) = ZGmi? = 1 (A2)

m=1
irrespective of the number of degenerate minima. Foreventimes, we thus geta parity correction
tox2equalto Ix (I'+1)/(2I +3). This correction is negligible at largebut can be measured

) . . —@ . .
atI’ = 1, where it predicts a shift cg to xz( )(1). The same effect is more sensible fBrand
Ax?, and will be discussed in appendix B.

Wall correction. Another correction comes from the presence of the wall at 0 in the
particular case whergy, = 0 itself is a minimum. This situation occurs with probability:
1
r+2

P (0) = (A3)
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Let us thus assume thaf) = 0 is the first deepest minimum, together with— 1) other

minima at even positions”) m = 2,...,k. Let us also assume thais even so that the
particle can sit precisely in these minima. Still, after equilibration, the minimurﬁ}i)ﬁltz 0
is less probable that the other minima. This effect is visibl& at 0 andI" = 1 where the

equilibration is due to residual fluctuations only.

Weights at odd times

Weights at even times

Figure Al. The modified equilibrium weights for degenerate minima & = 1 in the case of
a first minimum right at the wall. Each weight at even times is the average of the neighbouring
weights at odd times and conversely.

In this case (see figure Al), thkeminima are at positions,(;'i‘r)] = 2m — 2. Since the
minimum atx., has no accessible neighbour on its left, it is easy to see that, at even times,
this minimum is less probable that the others by a factor of two, leading to a probability
1/(2k — 1) for this minimum and a probability/22k — 1) for the (k — 1) others, instead of an

equal probability 1k for each minimum. The correction % (1) is thus:

2 1\ & k—1
<2k—1_E) ) @n=2 =5 A4
m=2

and that tor2" (1):

2 1\ & 2
(Zk—_l — %) 2m —2)% = é(k - 1. (A.5)
m=2

According to (3.31) and (A.3), such a situation occurs with probatﬂﬁbyx (%)(%)"‘1.
Combining the parity correction and the wall correction, we get

1 &3/1V k-1 92-3InM)
Feor =¥IW+2x Y 2 (2 - A.6
Xcorr. x(1) 3Xk=14<4> % —1 24 ( )

instead oft® (1) = 4, i.e. numerically 396 instead of 566, and

— —© 2 1 & 3/1\ 12 4724
Zeor =22 (Ao xI+ZxY (2] Zh-1=—r A7
X“corr. X D 5X 3Xk14<4> 3( ) 135 ( )

. —(3 . . . i
instead Ofxz( >(l) = 92—372 i.e. numerically 389 instead of 3462. With these values, the
3

estimatey;” = 0.069 78 is modified intgcor. = 0.067 33, i.e. is lowered by.3% only.
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(i1)

(iii) /

Figure A2. Respective weights of accessible minima at even timds ferl in the three situations:
(i) the first minimum is right at the wall; (ii) the first minimum is at an odd position; (iii) the first
minimum is at an even position but not at the wall.

Appendix B. Computation of Y> and Az? in the limit T — 0

In this appendix, we will calculate the value of the peak'at> 0 andI" = 1 of ¥, and
Ax?. These values are very sensitive to the residual fluctuations. We will thus follow the
same lines as in the previous appendix. We will consider even times and a situation with
degenerate minima at position§") = x\ +2m —2,m = 1,..., k. According to (3.31),
this situation occurs with probabilit%(%)k‘l. We distinguish between three possibilities for
the first minimum:

® x,f,’n = 0. According to (A.3), this occurs with probabiligl.

(i) xr(nl|)n is odd. According to (A.1), this occurs with probabiligy
(iii) x.% is even and non-zero. This occurs with probability £ — 2 = 2.
The weights associated to the minima (or their neighbours) in the three situations are depicted
in figure B1. The corresponding contributionsipare

1 \2 2 \*  4%-3 , -
(—Zk—l) +(k—1) <2k— 1) = (2k—l)2 In case (|)
1\2 1\ 1\ 2%-1 _ )
<§> +(k—1) <%> + <§> =Sz in case (ii) (B.1)

k <—> = } in case (iii)

k



468 J Chave and E Guitter

Combining these contributions with their respective weights, we get

v is N1 4k-3 L2 2%-1_ 4 1
= _— —_— —)( —X _X—
2 4\a 37 @2—12 5 22 15 &

k=1
=0.706 415 (B.2)
Similarly, the contributions ta\x? are
k ) 2 4k(k3 2k2+ 2k — 1)
P — 2m — 2 2m — 2 i i
2k X:: ) — 2k 1 Z( ) 32k 12 in case (i)
(B.3)

min min min

1 2. 1, 2. 1 2
Ex-—1)+EZ:()C-+2m—3)+2—k(x-+2k—l)

2
1 1 1
— (E(xr;?n — D+ Y i+ 2m = 3) + - G + 2 — 1))
m=2

k% +2 . N
=3 in case (ii) (B.4)
1< 1¢ ko1
. > it 2m —2)? — . S imtan—2)) = 3 in case (iii) (B.5)
m=1 m=1

Combining these contributions with their respective weights, we get
00 N1 M(KB—242+2%—1) 2 K2+2 4 k2-1
Ax2=2§ 1 1 k(k® — 2k“ + 2k )+_Xk +—><k—
4\ 4 3 3(2k — 1)2 5 3 15 3
=0.789 288 (B.6)

k=1
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