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Abstract. We study the Sinai model for the diffusion of a particle in a one-dimensional quenched
random energy landscape. We consider the particular case of discrete energy landscapes made of
random±1 jumps on the semi-infinite lineZ+ with a reflecting wall at the origin. We compare the
statistical distribution of the successive local minima of the energy landscapes, which we derive
explicitly, with the dynamical distribution of the position of the diffusing particle, which we obtain
numerically. At high temperature, the two distributions match only in the large time asymptotic
regime. At low temperature however, we find even at finite times a clear correspondence between
the statistical and dynamical distributions, with additional interesting oscillatory behaviours.

1. Introduction

The problem of the diffusion of a particle in a one-dimensional quenched random energy
landscape has been studied for many years [1, 2]. If the landscape itself has a random walk
statistics, many exact predictions exist for thelong-time behaviourof the diffusion process.
For an unbiased statistics of the potential, i.e. in the absence of drift, the average distance〈x〉
travelled by the particle grows very slowly at large times, with the Sinai scaling behaviour
〈x〉 ∼ (T ln(t))2, whereT is the temperature [2]. The asymptotic probability distribution
is universal in the scaling variablex/(T ln(t))2 and its precise form is known exactly for a
single diffusing particle [3–5]. Moreover, the thermal dispersion (or the distance between two
diffusing particles in the same random potential) remains finite at large times [6]. The physical
picture underlying these results is simply that of alocalizationof the diffusing particle in the
deepest energy minimum which it can reach at timet by passing larger and larger energy
barriers [6, 7].

These large time asymptotic predictions were tested numerically by computing theexact
probability distribution for the positionx of the particle at finite but large enough timest for
energy landscapes drawn at random, and then averaging over a large enough sample of such
landscapes [8–10]. One should notice that the Sinai scaling〈x〉 ∼ (T ln(t))2 defines a very
slow diffusive process. For such a process, the long-time behaviour is expected to be reached in
practice after extremely long transients, especially at low temperature. Such times can be out
of reach in practical situations or in finite time numerical simulations. This probably explains
why the asymptotic predictions are not fully recovered in [8]. In any case, very little is known
about the finite-time behaviour of the model or about the approach to the asymptotic regime.
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In practice, the localization of the particle in the deepest minimum has the nice consequence
that some of thedynamicalproperties of the diffusion process can be deduced directly from the
correspondingstatisticalproperties of the minima of the random potential. More precisely,
the underlying idea is to assume that, at times of ordert , the particle is localized in the
deepest minimum of the energy landscape which it could reach by passing all the energy
barriers1E of height less or equal to0 ∼ T ln(t). The time dependence of various quantities
in the dynamical process can then be obtained from the equilibriumstatisticsof the energy
minima and its dependence in the highest passable energy barrier0. This idea has been
implemented recently to develop a new real space renormalization group (RSRG) approach
for the Sinai model [11]. The RSRG formalism consists in performing a suitable decimation
of the barriers with height less than0 to obtain universal renormalization group equations
for the variation with increasing0 of the effective energy landscape distribution seen by
the particle at the timescalet . Long-time properties are obtained from the0 → ∞ fixed
point of these RSRG equations. This technique allows us to recover the universal asymptotic
probability distribution of a single particle for various boundary conditions. It also allows for
the prediction of asymptotic two-time or two-particle correlations.

Following the above ‘statistical picture’ leading to the exact asymptotic predictions, one
may wonder whether this picture could also help to investigate shorter times or very low
temperatures. In this paper, we test the connection between the dynamical properties of the
diffusion process and the statistics of the minima of the energy landscapes for finite times.
We use a particular distribution of the disorder where the energy landscapes are made of
successive random±1 increments, i.e. have the statistics of adiscreterandom walk. The
reason for this choice is twofold. On the one hand, we can easily deriveexplicit laws for the
statistics of minima at arbitrary (even small)0. On the other hand, this is particularly adapted
to numerical simulations of the dynamical process. As we shall see, our results corroborate
the statistical picture, not only at large0 where we recover the universal distributions expected
for general random energy landscapes with a random walk statistics, but also at small0 and
low temperature, where the discrete nature of the energy landscapes is sensible and yields
interesting behaviours.

The paper is organized as follows. In section 2, we briefly describe the particle diffusion
process and the distribution for the random energy landscapes. In section 3, we derive explicit
formulae for the statistics of energy minima in the presence of energy barriers of arbitrary
scale0. Section 4 presents numerical results for the dynamical diffusion process. These
results are compared with the predictions of the statistical approach of section 3. We gather
our conclusions in section 5.

2. Diffusion of a particle in a discrete random energy landscape

We consider the following discrete distribution for the quenched energy landscapes. On each
sitex = 0, 1, 2, . . . labelled by a non-negative integer, we associate a random energy variable
E(x) such that (see figure 1)

E(0) = 0

1E(x) = E(x + 1)− E(x) = ±1.
(2.1)

The sign±1 of the increment is drawn at random between successive sites with even probability
1
2, i.e. we introduce no drift in the problem. With the choice (2.1), the values of the energy are
limited to integers, meaning that we have implicitly fixed an underlying energy scale. We can
viewE(x) as the ‘height’ at sitex of a discrete random walk describing our energy landscape.
We finally setE(−1) = +∞, i.e. put an infinite reflecting wall on the negative side of the origin,
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Figure 1. A discrete random energy landscapeE(x). A reflecting wall prevents the particle from
exploring the negativex region. The particle jumps to the left or to the right with the probabilities
given by equation (2.2).

while we keep a free boundary condition atx = +∞. This choice of boundary condition is
clearly not crucial but makes our analysis simpler since in this case, deeper minima always
appear at increasing values ofx.

For a given realization of the quenched random energy landscape, we consider the
following discrete time dynamical process.

— We start at timet = 0 at positionx = 0 with energyE(0) = 0.
— Given the positionx with energyE(x) at timet , the position at timet + 1 is

x + 1 with probability px ≡ e−β1E(x)

e−β1E(x) + eβ1E(x−1)

x − 1 with probability qx ≡ eβ1E(x−1)

e−β1E(x) + eβ1E(x−1)

(2.2)

with 1E(x) as in (2.1) andβ = 1/T the inverse temperature.

With the choice (2.1) for the variation of the energy on neighbouring sites, the ratiopx/qx
is equal to 1 if the two sitesx + 1 andx − 1 have the same energy, or to exp(±2/T ) if they
have different energies. Note that the casex = 0 is special withp0 = 1− q0 = 1. Note also
that the particle has to move to one of its neighbouring sites at each time step, i.e. we do not
allow the particle to remain at the same site. As a consequence, the particle occupies sites
with even position at even times and sites with odd position at odd times. This effect results
in ‘residual fluctuations’ even atT = 0. The above model is very simple since it depends on
only one parameter, the temperatureT . We study its behaviour numerically in section 4 but
let us first derive explicit laws for the minima of energy landscapes with the discrete random
walk statistics (2.1).

3. Statistics of energy minima

In this section, we forget for a while the dynamical process and focus on the statistics of the
successive minima of the random energy landscapes which can be reached in the presence of
increasingly passable energy barriers. Following [11], we consider for any given realization of
the energy landscape the positionx = xmin(0) of thedeepestminimum of this landscape which
can be reached, starting from the wall at the originx = 0, by passing through energy barriers
of heightless or equalto a fixed scale0. Herexmin and0 are non-negative integers. For each
0, we compute the probabilityp0(x) thatxmin(0) equalsx, obtained by averaging the quantity
δx,xmin(0) over all realizations of the energy landscape. Note that, for a given realization, the
deepest reachable minimum is not necessarily unique but can be degenerate. We will thus
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Figure 2. For a strip of height0 = 1, the random walk is a series ofE = 0→ 1→ 0 two-step
sequences. To obtain 2D0(z), each two-step sequence must be dressed with a factor 2D0−1(z) in
the middle.

consider three different probabilitiesp(1)0 (x), p
(2)
0 (x) andp(3)0 (x), corresponding respectively

to the following prescriptions in case of degeneracy:

(1) we keep only the closest minimum to the origin,
(2) we keep only the furthest minimum from the origin,
(3) we take the average over all the degenerate minima, i.e. consider the quantity

(1/k)
∑k

i=1 δx,x(k)min
for k degenerate minima at positionx(k)min.

We shall give below explicit formulae for the generating functions

P (i)0 (z) =
∞∑
x=0

p
(i)
0 (x)z

x i = 1, 2, 3. (3.1)

3.1. Random walk in a strip of height0

Before we proceed, we need to evaluate the probabilityd0(x) for a random walk starting
at E(0) = 0 to have itsx first steps inside the strip 06 E 6 0 and its(x + 1)th step
at E(x + 1) = −1, i.e. the probability for the walk to leave the strip for the first time just
after positionx and downwards. We recall here the explicit form of the generating function
D0(z) =

∑
x d0(x)z

x . In the following, we will always assume that the(x + 1)th step points
downwards, which in practice occurs with probability1

2, i.e. we will calculate 2D0(z) instead
of D0(z).

The functionD0(z) satisfies the recursion relation:

D0(z) = 1

2− z2D0−1(z)
(3.2)

with the initial condition 2D0(z) = 1 (for 0 = 0, the first exit from the zero-width strip
occurs necessarily just afterx = 0). This relation can be understood as follows (see figure 2):
consider the case0 = 1, for which the random walk is necessarily of even lengthx and
made of the repetition ofx/2 elementary two-step sequences of the type (E = 0→ 1→ 0).
Each two-step sequence comes with a factorz2 in the generating function and occurs with a
probability( 1

2)
2, leading to,

2D1(z) =
∞∑
x=0
xeven

(
z2

22

)x
2

= 1

1− ( z2)2
(3.3)
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in agreement with (3.2) andD0(z) = 1
2. The generating function 2D0(z) can be obtained

in the same way by replacing the weight(z/2)2 for the elementary two-step sequence by a
weight(z/2)2× 2D0−1(z), corresponding to inserting between the two stepsE = 0→ 1 and
E = 1→ 0 an arbitrary sequence of steps limited to the strip of width0−1, 16 E 6 0 (see
figure 2). Making this replacement in (3.3) directly leads to (3.2).

From (3.2), we can write the generating functionD0(z) as the ratio:

D0(z) = P0(z)

P0+1(z)
(3.4)

whereP0(z) is an even polynomial of degree 2[0/2] in the variablez. Indeed, writing
D0(z) = P0(z)/Q0(z), (3.2) gives

P0(z)

Q0(z)
= 1

2− z2 P0−1(z)

Q0−1(z)

= Q0−1(z)

2Q0−1(z)− z2P0−1(z)
(3.5)

leading to recursion relations

P0(z) = Q0−1(z)

Q0(z) = 2Q0−1(z)− z2P0−1(z).
(3.6)

EliminatingQ0, we get the announced result (3.4), with, moreover, the recursion relation

P0+1(z)− 2P0(z) + z2P0−1(z) = 0 (3.7)

which determinesP0(z) from the initial valuesP0(z) = 1 andP1(z) = 2. Setting

P0(z) = z0U0
(

2

z

)
↔ U0(y) =

(y
2

)0
P0

(
2

y

)
(3.8)

the above recursion relation transforms into

U0+1(y)− yU0(y) +U0−1(y) = 0 (3.9)

with U0(y) = 1 andU1(y) = y. The solution of this recursion is given by the well known
Chebyshev polynomialsU0(z), characterized by

U0(2 cosh(t)) = sinh((0 + 1)t)

sinh(t)
. (3.10)

We thus get the explicit form:

P0

(
1

cosh(t)

)
= 1

(cosh(t))0
sinh((0 + 1)t)

sinh(t)
(3.11)

and the explicit formula:

D0

(
z = 1

cosh(t)

)
= cosh(t)

sinh((0 + 1)t)

sinh((0 + 2)t)
. (3.12)

The relation betweenD0(z) and the Chebyshev polynomials is also derived in [12] in the
context of the Temperley–Lieb algebra. In the limitt → 0, we get the particular result

D0(1) = 0 + 1

0 + 2
(3.13)

which is the probability for the walk to leave the strip 06 E 6 0 downwards atE = 0 rather
that upwards atE = 0. In the limit0→∞, we have

D0(z)
0→∞→ 1−√1− z2

z2
(3.14)

which, up to normalizations, is the generating function of Catalan numbers, counting closed
walks on the semi-infinite lineE > 0, as it should.



450 J Chave and E Guitter

3.2. Explicit forms ofP (i)0 (z)

We now come to the evaluation of the generating functionsP (i)0 (z) defined by (3.1). Given
an arbitrary landscape of infinite length and for a given0, we have to look for the deepest
minimum which can be reached by passing barriers of height less or equal to0. To do so, we
decompose the random walk defining the landscape according to the following algorithm:

(1) Starting atx0 = 0 andE(x0) = 0, the walk has a first part entirely included in the strip
of width 0, 06 E 6 0. In this part, the last return atE = 0 occurs at some positionx1

(possibly 0). This defines a first building block of sizex1.
(2) Sincex1 is the last return atE = 0 within the strip of size0, two situations may occur for

the remaining part of the walk:
(2-1) Either the walk reachesE = 0 + 1 without returning toE = 0, i.e. the walk leaves

the strip upwards. In this case, we have reached a barrier which is too high to be
passed and we stop the process.

(2-2) OrE(x1 + 1) = −1, i.e. the walk leaves the strip downwards. In this case we repeat
the process 1, i.e. starting at positionx1 + 1 withE(x1 + 1) = −1, we consider the
following part of the walk entirely in the strip of height0,−16 E 6 0−1 and look
for the positionx2 of the last return toE = −1 within this strip, defining a second
block of sizex2− x1− 1. We repeat the process until it is stopped by a barrier which
is too high. The numberE of building blocks is simply related to the height 1− E of
the deepest minimum which could be reached. The position of this minimum can be
obtained by properly summing the sizes of the blocks.

This algorithm is illustrated in figure 3. To computeP (i)0 (z), we simply have to assign
a weight 2D0(z) per building block and a factor(z/2) for each descending bond between
building blocks. The different prescriptions in the case of degenerate minima concern only
the last building block. In case(1) of the closest minimum to the origin, the size of this block
does not contribute to the positionxmin of the minimum. This block thus comes with a factor
of one. Summing over the numberE of blocks, we deduce thatP (1)0 (z) is proportional to (see
figure 3(1)):

P (1)0 (z) ∝ 1 + 2D0(z)
z

2
+
(
2D0(z)

z

2

)2
+ · · · = 1

1− zD0(z)
. (3.15)

The normalization factor is fixed by demanding thatP (1)0 (1) = 1 since, forz = 1, the generating
function gives the probability to find the minimum at some arbitrary positionx. We thus get:

P (1)0 (z) =
1−D0(1)

1− zD0(z)
. (3.16)

Note that from the previous subsection, we can also understand the prefactor 1− D0(1) as
the probability for the random walk to eventually leave the strip of size0 upwards rather than
going downwards. For the prescription (2), where we choose the furthest minimum from the
origin, we have an extra factor 2D0(z) for the last building block. We thus get in this case (see
figure 3(2)):

P (2)0 (z) ∝ 2D0(z) + 2D0(z)
z

2
2D0(z) +

(
2D0(z)

z

2

)2
2D0(z) + · · · = 2D0(z)

1− zD0(z)
(3.17)

and

P (2)0 (z) = D0(z)

D0(1)
× 1−D0(1)

1− zD0(z)
. (3.18)

The difference between cases (1) and (2) is thus simply a prefactorD0(z)/D0(1) coming
from the last building block. This factor is nothing but the generating function

∑
x e0(x)z

x
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Figure 3. A schematic picture of the decomposition of random walks into building blocks. The
numberE of building blocks is related to the height 1−E of the deepest minimum reached without
passing a barrier of size greater than0. For the different building blocks, we have also indicated the
weights obtained by the average over the random walks to reconstruct the appropriate generating
functionP(i)0 . These weights depend on the precise prescription for degenerate minima: (1) keep
the closest minimum to the origin; (2) keep the furthest minimum from the origin; (3) average over
the minima.

associated with the probabilitye0(x) to find the furthest minimum at a distancex from the
closest minimum.

The prescription (3), where we average over all minima in the case of degeneracy is more
subtle. Here again, it concerns only the weight of last building block and leads to a different
prefactor. Suppose we havek + 1 degenerate minima, each minimum will receive a weight
1/(k + 1). For the(m + 1)th minimum among thek + 1, we have to assign a factorz only to
the elementary steps of the walk which are to the left of the minimum while the steps which
are to the right do not contribute tox(m+1)

min and receive a factor 1 instead. Still the right part
of the block is important to guarantee that the total number of minima is preciselyk + 1. The
generating function between successive minima is thus simply 2D0−1(z)(z/2)2 on the left side
of the chosen minimum and 2D0−1(1)( 1

2)
2 on its right side (see figure 3(3)). The prefactor

associated with the last block is now proportional to

∞∑
k=0

1

k + 1

{ k∑
m=0

(
z2D0−1(z)

2

)m (
D0−1(1)

2

)k−m }

= 1
z2D0−1(z)

2 − D0−1(1)
2

ln

(
1− z2D0−1(z)

2

1− D0−1(1)
2

)

= 2D0(z)D0(1)

D0(z)−D0(1)
ln

(
D0(z)

D0(1)

)
(3.19)
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where we have used (3.2). We finally get

P (3)0 (z) =
D0(z)

D0(z)−D0(1)
ln

(
D0(z)

D0(1)

)
× 1−D0(1)

1− zD0(z)
(3.20)

by adjusting the normalization to guarantee thatP (3)0 (1) = 1. Note that, as for (3.18), the
prefactor involves only a function ofD0(z)/D0(1).

The formulae (3.16)–(3.20) can be made more explicit by use of (3.12), leading to

P (1)0
(
z = 1

cosh(t)

)
= 1

0 + 2
× sinh((0 + 2)t)

sinh((0 + 2)t)− sinh((0 + 1)t)

P (2)0
(
z = 1

cosh(t)

)
= 1

0 + 1
× cosh(t) sinh((0 + 1)t)

sinh((0 + 2)t)− sinh((0 + 1)t)

P (3)0
(
z = 1

cosh(t)

)
= cosh(t) sinh((0 + 1)t)

sinh((0 + 2)t)− sinh((0 + 1)t)

× ln

[
0 + 2

0 + 1

cosh(t) sinh((0 + 1)t)

sinh((0 + 2)t)

]
× sinh((0 + 2)t)

(0 + 2) cosh(t) sinh((0 + 1)t)− (0 + 1) sinh((0 + 2)t)
.

(3.21)

These expressions constitute our central result describing the statistics of minima at finite0

for the particular distribution of landscapes that we study.
At large0, an appropriate scaling limit can be obtained by a suitable scaling ofz:

z = 1− s

02
i.e. t =

√
2s

0
+O

(
1

03

)
. (3.22)

This corresponds to setting

x = 02l (3.23)

in the original probabilitiesp(i)0 (x). In this limit, the three generating functionsP (i)0 tend to
the same limiting distributionP∞(s), equal to

P∞(s) = tanh(
√

2s)√
2s

. (3.24)

This distribution is now the Laplace transform

P∞(s) =
∫ ∞

0
dl p∞(l)e−sl (3.25)

of the limiting probability density

p∞(l) = lim
0→∞

02p(i)(x = 02l) i = 1, 2, 3. (3.26)

From (3.24), we get

p∞(l) =
∞∑
k=0

e−
(2k+1)2

8 π2l . (3.27)

The formulae (3.24) and (3.27) are actually more general and valid for all the distributions
of the energy landscape which have a random walk statistics, i.e. tend to a Brownian motion
distribution in the continuum. These laws can be derived directly by use of the RSRG formalism
developed in [11]. They appear there as the large0 fixed point of RSRG equations describing
the flow with0 of similar renormalized probability distributions. Here, we have made explicit
the whole0 dependence of these probabilities in the special case of an energy landscape made
of discrete±1 increments.
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The nice feature of the formulae (3.24) and (3.27) is that they are precisely those derived
in [3] for the limiting probability distribution of the dynamical process itself in its large time
scaling regime. In this case, the natural scaling variable isl ≡ σ 2x/ ln2(t), whereσ = 2/T
is directly related to the expectation value of ln2(px/1 − px). We thus recover here the
asymptotic equivalence between the statistics of minima and the dynamical process, with the
precise correspondence0 = ln(t)/σ . Such a relation, valid in principle only for large times,
will be tested in section 4 at shorter times.

Finally, let us mention that a similar computation of the generating function at finite0

can be performed for landscapes without wall at the origin. The treatment of the degeneracies
is, however, more involved in this case with even more different possible prescriptions. Still,
the limiting distribution at large0 is independent of the chosen prescription. One can also
introduce a drift in the problem when drawing the random landscapes. For instance, choosing
in (2.1)1E(x) = 1 with probabilityp and1E(x) = −1 with probabilityq = 1− p, we get
for, say,P (1)0 the expression

P (1)0 (z) =
1− 2qD0(

√
4pq)

1− 2qzD0(
√

4pqz)
. (3.28)

Different regimes are obtained according to sign ofp − q, and to whetherp − q is of order
one (strong bias) or of order 1/0 (weak bias).

To end this section, let us evaluate the first correction toP∞(s) by further expanding the
formulae forP (i)0 in powers of 1/0. We get

P (i)0
(
z = 1− s

02

)
=
(

1− a
(i)

0

)
tanh(
√

2s)√
2s

+
a(i)

0

(
1− 3

2a(i)
tanh2(

√
2s)

)
+O

(
1

02

)
(3.29)

witha(1) = 2,a(2) = 1 anda(3) = 3
2. The above 1/0 corrections are probably not universal, i.e.

they depend on our particular choice for the statistics of landscapes. Still, the 1/0 correction
to the relative differences(P (2)0 − P (1)0 )/P (1)0 and (P (3)0 − P (1)0 )/P (1)0 should be universal.
Indeed, they involve the proportionality factors between the differentP (i)0 , i.e. the factor
D0(z)/D0(1) in (3.18), or the factorD0(z)/(D0(z) − D0(1)) ln(D0(z)/D0(1)) in (3.20).
As we already mentioned,D0(z)/D0(1) is the generating function for the probabilitye0(x)
to have the furthest minimum at a distancex from the closest. The proportionality factors
above thus concern therelativedistance between the different degenerate minima, and ignore
their absolute position. They are the important statistical quantities to be used when one is
interested in the localization property of the dynamical process. If we insist on imposing the
scaling (3.22) appropriate to absolute positions, we get, forz = 1− s/02

D0(z)

D0(1)
= 1 +

1

0

(
1−
√

2s coth(
√

2s)
)

+O
(

1

02

)
D0(z)

D0(z)−D0(1)
ln

(
D0(z)

D0(1)

)
= 1 +

1

0

(
1−√2s coth(

√
2s)

2

)
+O

(
1

02

)
.

(3.30)

At large0, the factors (3.30) above tend to one. This does not mean that degenerate minima
disappear in this limit. Indeed, one can easily compute the probability for having exactlyk + 1
degenerate minima, equal to(

1− D0−1(1)

2

)(
D0−1(1)

2

)k
= 0 + 2

2(0 + 1)

(
0

2(0 + 1)

)k
. (3.31)

Degeneracies, therefore, exist even at large0 where the above expression tends to( 1
2)
k+1.

However, most of these degeneracies occur at short distances, and not at distances of order
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02. Relative distances of order02 are found only with a probability of order 1/0. The 1/0
corrections above correspond to situations with exactlytwodegenerate minima at a distance of
order02, as corroborated by the fact that averaging over minima gives half the value obtained
by keeping the furthest minimum. Situations with three or more degenerate minima would
contribute to higher orders in 1/0. At large0, the scaling (3.22) is therefore not appropriate to
deal with the relative position of degenerate minima. As noticed in (3.14), a non-trivial large
0 exists forD0(z)/D0(1) without rescaling ofz, involving the Catalan generating function.
Expanding (3.14) inz, we obtain

e0(x)
0→∞→ e(x) ≡


0 if x odd

x!

2x+1( x2)!(
x
2 + 1)!

if x even. (3.32)

If we admit that relative distances between degenerate minima are the appropriate statistical
quantities to describe the distance between two diffusing particles, this result without scaling
of x at large times agrees with the idea of localization [6]. Still, as explained in [10], the
distributione(x) behaves likee(x) ∼ x−3/2 at largex. Therefore, its moments〈xα〉 diverge
for α > 1

2. This divergence comes precisely from the rare configurations (occurring with
probability 1/0) with two minima at a distance of order02. They contribute to〈xα〉 by a term
(02)α/0 = 02α−1 which diverges at large0 for α > 1

2 (see [10]).

3.3. Average position of the minimum

From the formulae for the generating functionsP (i)0 (z), it is straightforward to get the

average positionx(i)(0) and average squared positionx2
(i)
(0) of the minimum for the three

prescriptions:

x(i)(0) =
∞∑
x=0

xp
(i)
0 (x) = z

d

dz

∣∣∣∣
z=1

P (i)0 (z)

x2
(i)
(0) =

∞∑
x=0

x2p
(i)
0 (x) =

(
z

d

dz

)2 ∣∣∣∣
z=1

P (i)0 (z).
(3.33)

Expanding (3.21) in powers ofz− 1 aroundz = 1 (or in powers oft aroundt = 0), we get

x(1)(0) = 202 + 50 + 3

3

x(2)(0) = 202 + 70 + 3

3

x(3)(0) = 202 + 60 + 3

3

(3.34)

and

x2
(1)
(0) = 1604 + 8803 + 17402 + 1470 + 45

15

x2
(2)
(0) = 1604 + 10403 + 22602 + 1790 + 45

15

x2
(3)
(0) = 1604 + 9603 + 1780

9 02 + 1630 + 45

15
.

(3.35)

All of them lead to the same large0 asymptotic formulae

x(i)(0)
0→∞∼ 2

30
2

x2
(i)
(0)

0→∞∼ 16
150

4.
(3.36)
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This asymptotic behaviour involves only the scaling variablex/02 and the exact prefactors can
be directly obtained from the limiting distribution (3.24) by a suitable expansion ins around
s = 0. We have in particular the asymptotic relation

x2 ∼ 12
5 (x)

2. (3.37)

Here again, the difference for the subleading terms in (3.34) and (3.35) for the three
prescriptions comes from landscapes with two degeneracies separated by a distance of order02.
Such configurations, occuring with probability∼1/0, yield a correction of order02/0 = 0
to x(0) and a correction of order04/0 = 03 to x2(0). For these situations with exactlytwo
effective degenerate minima, it is equivalent to take the average over the minima (prescription
(3)) and to average over the closest and the furthest minimum (prescriptions (1) and (2)).
This explains why the subleading coefficient in the prescription (3) is exactly the average
of the subleading coefficients of prescriptions (1) and (2). Situations with three degenerate
minima distant from∼02 occur with probability∼1/02 and influence the sub-subleading
coefficient. Note also that the constant term in (3.34) and (3.35) must be the same for the three
prescriptions since, for0 = 0, there cannot be any degeneracy of the deepest minimum. The
above arguments explain whyx(3)(0) is exactly the average ofx(1)(0) andx(2)(0) and why

x2
(3)
(0) differs form the average ofx2

(1)
(0) andx2

(2)
(0) by a term of order02 only.

In order to have a precise measure of the subleading terms, we introduce the quantity

χ
(i)
0 =

x2
(i)
(0)

( 12
5 )(x

(i)(0))2
− 1 (3.38)

with a factor12
5 chosen to eliminate the leading large0 term, so thatχ(i)0 ∼ 1/0 tends to zero

at large0. Remarkably, in the case (3), an extra cancelation occurs, leading toχ
(3)
0 ∼ 1/02.

In the following section, we compare this quantity, as computed from (3.34) and (3.35), with
a similar quantity defined for the dynamical model.

4. Dynamics

4.1. Simulation

Beside the above theoretical statistical predictions, we have made a numerical study of the
dynamics (2.2) of a particle for a large sample of quenched random potentials drawn to satisfy
the relations (2.1).

For each drawn landscape, we calculate the probabilityP(x, t) that the particle sits at
positionx at time t . Due to the discrete nature of the landscape, it is possible to make an
exactenumeration of all the possible walks arriving at a given positionx at some timet , and
to evaluate their probability deduced from (2.2) for the particular chosen landscape.

A more efficient way to implement this enumeration is to calculateP(x, t) exactly step
by step in time from the master equation

P(x, t + 1) = px−1P(x − 1, t) + qx+1P(x + 1, t) (4.1)

with px andqx = 1− px the probabilities of jumping from sitex respectively to the right and
to the left, as defined in (2.2), with in particularp0 = 1− q0 = 1 and with the convention
p−1 = 0. The master equation is supplemented by the initial conditionP(x, 0) = δx,0. The
computed probabilityP(x, t) is then averaged over all the energy landscapes of our sample
(the sample size is 105 energy landscapes for most simulations).

At any finitet , it is clear that the particle cannot reach a positionx > t , henceP(x, t) = 0
exactly for allx > t . The normalization of the probability requires that

∑
x P (x, t) = 1 at
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any timet . In practice, the probability to occupy sites far from the origin is extremely low. To
reduce the computation time, we drop the normalization condition and replace it by∑

x

P (x, t) > 1− ε (4.2)

whereε � 1. Therefore, instead of describing the complete accessible landscape of sizex = t
at timet , we fix the maximal size at a much smaller value ofx such that the condition (4.2)
is fulfilled for all our energy landscapes. Of course, the choice of this size depends crucially
on the temperatureT and on the number of iterations. In practice, we takeε = 0.01 for
most simulations and we check that this simplification does not lead to significant errors. The
computation time is significantly reduced for low temperatures, since the effectively visited
landscape is of much smaller size. With this simplification, we were able to study the dynamics
up to 105 iterations for low-temperature regimes (104 for T = 2).

Note that for our particular choice of dynamics, the particle cannot stay at the same site
for two consecutive timest andt + 1. ThusP(2x + 1, 2t) = P(2x, 2t + 1) = 0. As we already
mentioned, the net effect of this parity condition is to create residual fluctuations, which persist
even atT = 0, where barriers of height0 = 1 can always be passed. This will explain in
particular why, atT = 0, some equilibration can take place between all the deepest minima
accessible by passing0 = 1-barriers. In the following subsections, we always present results
for times of a well-defined (even) parity.

It is instructive to visualize the typical evolution ofP(x, t)with time for a fixed landscape
before making the quenched average over our sample of landscapes. Figure 4 shows such
an evolution with 107 iterations. One clearly sees that the regions with a large probability of
occupation are concentrated around local minima of the potential. Ast increases, these high
density regions migrate to deeper minima. The duration of occupation of a local minimum in
logarithmic scale is roughly proportional to the height of the energy barrier on its right.

4.2. DistributionP(x, t)

Let us first present our numerical results for the distributionP(x, t). We will use overbars to
denote the average over our sample of landscapes, while brackets〈·〉 will denote the thermal
average estimated from the probabilityP(x, t) computed for a fixed landscape. We are
interested here in the average distributionP(x, t) at a large enoughfixed time. From the
asymptotic large0 results (3.26) and (3.36), we expect that, at larget ,

〈x〉(t)P (x, t) ∼ 2

3
p∞

(
2

3

x

〈x〉(t)

)
(4.3)

with p∞ given by (3.27).
Figure 5 shows our results forT = 1

2 and different values oft . The agreement with the
asymptotic exact formula is apparently very good. To have a better quantitative evaluation of
how close we are to the asymptotic result, we will study in the next section the first and second
moments of the distribution. As we shall see, significant deviations do actually exist, some of
which can be well explained by our finite0 corrections to the asymptotic statistics. We will
also discover some interesting underlying oscillatory behaviours.

4.3. Results for the first and second moments and comparison with the statistics of minima

We present here our numerical results for the average position〈x〉(t) and average squared
position 〈x2〉(t) for varying time t and at various temperatures. We first check if〈x2〉(t)
and(〈x〉(t))2 obey the expected asymptotic relation (3.37) with a proportionality factor12

5 .
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Figure 4. Evolution with time (in logarithmic scale) of the distributionP(x, t) in a given energy
landscape (drawn below). The evolution runs over 107 iterations. The intensity in the greyscale is
proportional to− lnP(x, t), i.e. darker regions correspond to higher values ofP(x, t).

Note that for a purely diffusive system in a homogeneous medium (i.e. in a flat energy
landscape) where〈x〉(t) ∼ √t , a similar relation holds, but with a smaller proportionality
factorπ/2.

Figure 6 presents the corresponding data for several temperatures fromT = 2
5 to T = 2.

For the range of〈x〉2 presented here, the asymptotic formula (3.37) and the more complete
statistical relations obtained from our finite0 predictions by eliminating0 between (3.34) and
(3.35) do not differ significantly. We therefore expect, if the dynamics follows the statistics

of minima, that the asymptotic linear relation is verified in the whole range of〈x〉2. This is
precisely what we observe at low temperatures (belowT ∼ 1). In this regime, a more refined
analysis will reveal very interesting underlying oscillatory behaviours, as emphasized below.
At high temperatures (aboveT ∼ 1), we see a significant deviation from the expected law, with

a behaviour closer to a purely diffusive regime at small〈x〉2. Still, even atT = 2 (see inset in

figure 6), the correct slope is eventually recovered at large〈x〉2. In this range of temperatures,
the observed deviation is not explained by our finite0 corrections to the asymptotic lawp∞,
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Figure 5. The rescaled average distribution〈x〉(t)P (x, t) as a function of the rescaled variable
x/〈x〉(t) atT = 1

2 and for various values of the timet = 1000, 5000, 10 000, 50 000 and 100 000.
The full line indicates the exact asymptotic formula as given by (4.3) and (3.27).
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Figure 6. A numerical check of the relation (3.37). The full line has the slope12
5 expected from

(3.37) while the broken line has the slopeπ/2 expected for the normal diffusion is a flat landscape.

ForT = 2, a broader window of〈x〉2 (see inset) is needed to recover the asymptotic law.
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Figure 7. The quantity0(t) as defined by equation (4.4) forT = 1
20 to T = 2, as a function of

ln(t). The full lines show the corresponding fits of equation (4.5) for the average linear growth
of the curves remaining after discarding the superimposed oscillations. The use of the complete
formula (4.4) is necessary to obtain the correct position of the fit at low temperatures. At high
temperature (T = 2 in the inset), the fit (4.5) is better if we define0(t) by the asymptotic formula

0(t) ∼
√
( 3

2)〈x〉(t).

but is more simply the effect of a short-time diffusion regime in which the particle does not
yet feel the random potential. Such a regime will last until the particle reaches a distancex

such thatE(x) ∼ √x ∼ T , i.e. up to a transition timet ∼ x2 ∼ T 4.
For a comparison of our data with the statistics of minima of the previous section, we need

to consider, instead of the first and second moments, more refined quantities which in practice
contain exactly the same information but are more adequate for our purposes since they clearly
emphasize the finite0 corrections. Anticipating our conclusions, we focus on the statistics
(3) which corresponds to an averaging over degenerate minima. Inverting the formula (3.34)
for the prescription(3), we consider instead of〈x〉(t) the equivalent quantity:

0(t) ≡ −3 +
√

3 + 6〈x〉(t)
2

(4.4)

such thatx(3)(0(t)) = 〈x〉(t). The quantity0(t) is thus an estimate of the effective height
of the barriers which can be passed at the timescalet , obtained by matching the first moment
measured in the dynamical process with the average position of the minima resulting from the
formula (3.34) in case(3).

Figure 7 shows0(t) as a function of ln(t) for different values of the temperature. At low
temperature,0(t) oscillates around an average straight line and develops plateaus atinteger
values of0. These plateaus are of course a signature of the underlying discrete nature of the
landscape, and are an indication of the actual relation between the dynamics and a process of
passing increasing discrete barriers. This effect disappears at higher temperatures. Discarding
these oscillations, the curves have an average linear growth with a slope directly proportional
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to the temperature. More precisely, we can reasonably fit this average linear growth by the
formula (see figure 7: for the oscillating curves, the fits reasonably match the maxima of the
oscillations)

0(t) = T

2
ln

(
t

t0

)
+ 1 (4.5)

with ln(t0) ∼ 4. The proportionality factor12 = T/σ between0(t) andT ln(t) is that expected
from the correspondence between statistics and dynamics in the asymptotic limit, as already
discussed. At low temperature and shorter times, this correspondence is still reasonably good,
apart from the superimposed oscillations. The additive constant 1 in (4.5) can be understood
as the effect of the ‘residual fluctuations’ which remain atT = 0 from the parity condition and
make the barriers of height0 = 1 always passable. To obtain the correct position of the linear
fit, we definitely had to use the complete formula (4.4), which presents a shift of− 3

2 with

respect to the asymptotic relation0(t) ∼
√
( 3

2)〈x〉(t) obtained from (3.36). This reflects the
importance of the finite0 corrections at low temperatures. For higher temperature, however
(T = 2), we obtain a better scaling with the asymptotic law without shift (see the inset in
figure 7, full triangles) than with the shift (empty triangles). Again at high temperatures, the
deviation from the asymptotic limit is not explained by finite0 corrections alone.

We now analyse our data for the second moment〈x2〉(t). Here again, we prefer to consider
the more adequate quantity

χ(t) = 〈x2〉(t)
( 12

5 )(〈x〉(t))2
− 1 (4.6)
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Figure 8. The quantityχ(t) defined by equation (4.6) as a function of0(t) for temperatures
ranging fromT = 1

5 to T = 2. The full curve shows the statistical estimateχ(3)0 (0) as defined by
equation (3.38). The cross in the inset indicates the small corrections at0 = 1 to this statistical
value due to parity effects, as computed in appendix A. The broken line in the lower inset indicates
the value ofχ for pure diffusion in flat landscape.
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copied from (3.38) to measure the deviation from the asymptotic regime (3.37).
Figure 8 presents our results forχ(t) versus0(t), and a comparison with the corresponding

statistical relation calculated from the previous section betweenχ
(3)
0 and0. We again recover a

low-temperature regime with oscillations and a high-temperature regime without oscillations.
In this high-temperature regime, the asymptotic limit is reached very slowly and the short-
time dependence is different from the finite0 predictions for the statistics of minima. The
subleading short time corrections to the universal asymptotic behaviour are thus different from
that predicted by the statistics of minima. At low temperature, however, the oscillations ofχ

are peaked around integer values of0, and sharpen as the temperature decreases to zero. In this
limit T → 0, the height of the peaks tend precisely to the value ofχ

(3)
0 at the corresponding

integer. We thus recover our predictions for the statistics of minima, which strictly speaking
are valid only for integer values of the barrier0. We also observe two additional dynamical
effects.

— Between two consecutive integer values0 − 1 and0, we find a transition regime with a
strong depletion ofχ . We interpret this effect as resulting from a period of equilibration
of the particle passing from the statistics of minima at scale0 − 1 to that at scale0.

— As the temperature increases, the peaks are rounded and their maxima slowly move to
lower values ofχ . The peaks eventually disappear at high temperature.

We interpret the above results as follows. From formula (4.5), the barriers of height0 are
passed at times of ordert (0) ∼ t0 exp[2(0 − 1)/T ]. After passing these barriers, we admit
that the time needed for equilibration in the (always present) degenerate minima is itself of the
order of a multiple oft (0). As the temperature is lowered, the corresponding proportionality
factor remains finite due to the residual fluctuations. During the equilibration process at a
given0, the data get closer to the equilibrium distribution of the minima. The time needed to
pass the next barriers, i.e. those of height0 + 1 is from (4.5)t (0 + 1) = t (0) exp(2/T ), that
is again a finite multiple oft (0), depending only on the temperature. In the low-temperature
regime, the particle thus has enough time to equilibrate and recover the statistics of minima for
a fixed passable height0 beforeit starts passing the barriers of height0+1. Conversely, at high
temperature, the particle keeps finding better and better minima by passing increasing barriers
without equilibration for each passed0. In particular, the particle does not feel the discrete
nature of the potential. This results in the suppression of the oscillations and a behaviour closer
to normal diffusion.

In the above analysis, the use of statistics(3) is crucial on the one hand to get peaks
precisely at integer values of0(t) and on the other hand to recover the theoretical value of
χ(0) at the peak for low temperatures. These conditions eliminate the two other statistics.
At this level of precision, the purely asymptotic resultχ = 0 is also ruled out. As discussed
in appendix A, statistics(3) itself must be modified by very small corrections due to parity
effects, i.e. the fact that the particle at timet cannot sit right at the correct minima if those
happen to have a parity different fromt . This effect is sensible only for the peak at0 = 1.
The corresponding correction is calculated in appendix A and leads to a very small reduction
(∼3.5%) of the peak (see figure 8), consistent with the data of the dynamical process. The parity
correction is more important for quantities which measure the localization of the particle, as
we discuss in the next section. The use of a different dynamics allowing the particle to remain
at the same site should suppress this correction.
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4.4. Localization

In order to have an idea of how localized is the particle, we have measured the probability
second moment:

Y2(t) =
∑
x

(P (x, t))2 (4.7)

which estimates the probability that two independent particles evolving in the same quenched
potential arriveexactlyat the same site at timet . This quantity is similar to the participation ratio
for localized quantum particles [13]. A non-zero value ofY2 is the signal of a localization. We
must, however, distinguish between two different effects which run counter to this localization
and therefore lowerY2: the effect of temperature which broadens the distribution of a particle
around its average position in a minimum, and the existence of several degenerate minima in
which the particles can fall. It is this last effect that we measure at very low temperatures. If
we assume that, whenT → 0, the particle is localized exactly in the deepest minima at scale
0(t), we estimateY2(t) by

Y2(0) =
∞∑
k=0

1

k + 1

0 + 2

2(0 + 1)

(
0

2(0 + 1)

)k
= 0 + 2

0
ln

(
2(0 + 1)

0 + 2

) (4.8)

with 0 = 0(t). In the formula above, we used probability (3.31) to have exactlyk + 1
degenerate minima, weighed by probability 1/(k + 1) to have the two particles in the same
minimum. In practice, as we already noticed, formula (4.8) must be corrected to account
for the parity effects of the dynamics. At large0, this simply amounts to reduceY2 by a
factor (0 + 2)/(20 + 3) + ( 1

2) × (0 + 1)/(20 + 3) sinceY2 must typically be divided by 2 if
the minima have the wrong parity (which occurs with probability(0 + 1)/(20 + 3) for even
times, see appendix B) and the particle has to sit on the two neighbours of the minimum.
With this estimate,Y2(t) thus tends at large times (0(t)→∞) to a finite value( 1

2) ln 2. The
same formula (4.8) with the above reduction factor also gives a good estimate at small0,
with for instance a valueY2 ∼ ( 12

5 ) ln( 4
3) ∼ 0.69 at0 = 1. In appendix B, we present a

detailed analysis of the exact corrections for the statistical model at0 = 1, leading to a value
Y2 ∼ 0.706 415.

Figure 9 shows our numerical results forY2(t) as a function of0(t). At low temperatures,
we recover peaks at integer values of0. At low temperatures, the value of the peak at0 = 1
is in perfect agreement with the estimate in appendix B and our results are consistent with a
localization of the particle in all the degenerate minima. At high temperatures,Y2(t) decreases
with time but still tends to a finite value at large0, apparently proportional to 1/T . We have
also measured the more usual Rényi entropyH2(t) = −ln(

∑
x P

2(x, t)) [9]. In contrast
with Y2, which is an average value over the disorder, exp[−H2] gives thetypical value of the
probability for two particles to be at the same site at timet . We find that exp[−H2] andY2

display the same behaviour and differ by a roughly constant multiplicative factor.
Another quantity of interest for the measure of the localization of a particle is the dispersion,

defined by

1x2(t) = 〈x2〉(t)− (〈x〉(t))2. (4.9)

If the particle were localized in a single minimum, the dispersion1x2(t) would not grow
indefinitely with time (or with0) but rather would reach a finite limit. The situation is quite
different if, as we expect, the particle is localized in several degenerate minima since, as we
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Figure 9. The quantityY2(t) as defined in equation (4.7) as a function of0(t) for temperatures
ranging fromT = 1

5 to T = 2. The horizontal bar is the value of the peak estimated in appendix B
from the statistics with parity corrections.
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already mentioned, minima can be separated by a distance of order02 with a probability 1/0.
In this case,1x2 grows like(02)2/0 = 03 and is thus infinite asymptotically.

Figure 10 shows our numerical results for1x2(t) as a function of0(t) in logarithmic
scales. At low temperatures, the peaks of1x2(t) follow the statistics(3) of the degenerate
minima, with the additional parity corrections, as computed for0 = 1 in appendix B. We thus
recover a regime of localization in all the degenerate minima. At high temperatures,1x2(t)

increases rapidly with time, with a scaling compatible with the expected03 dependence.

5. Conclusions and discussion

We have studied the problem of the one-dimensional diffusion of a particle in a semi-infinite
quenched random energy landscape withdiscreteinteger heights and for different temperatures
T . Our data converge to the expected large time universal asymptotic limit, but very slowly
(as 1/ ln t) and the approach to this limit crucially depends on temperature. To quantify the
finite-time corrections, we have compared our numerical data for the diffusion process at time
t with exact results for the statistics of the local minima of the landscapes reached by passing
energy barriers of increasing (integer) size0. BelowT ∼ 1, we find a low-temperature regime
in which the dynamical process precisely follows the statistics of minima which corresponds
to average over all the degenerate minima at a given scale0 with the expected correspondence
0 ↔ T ln t . Our data are consistent with a localization of the particle equally distributed in
all these degenerate minima. Interesting transition regimes interpolate between integer values
of the scale0. At higher temperatures aboveT ∼ 1, the approach to the asymptotic laws does
not follow the finite0 corrections to the statistical laws, at least in the regime of times that we
consider in our simulation.

We interpret these two different regimes as follows: at smallT , the particle has enough
time to equilibrate and recovers the statistics at a given0 before it starts passing barriers of
heights0 + 1. At high temperatures however, the particle keeps passing barriers of increasing
0 without having enough time for equilibration at a fixed0.

A natural question is whether the existence of two regimes is only a finite-time effect, or
whether it persists for larger times. In the first case, the correspondence between the dynamics
and the statistics should be recovered at larger times. In the second case, it is tempting to expect
a transition temperature between the two regimes. The low-temperature regime would anyway
be a consequence of an underlying discrete cut-off for the steps of the energy landscape. The
transition temperature would thus be of the order of this cut-off and would tend to zero in the
continuum limit where only the high-temperature regime would persist.
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Appendix A. Corrections due to residual fluctuations atT = 0

We will concentrate here on our statistics(3), which consists in averaging over all the degenerate
minima with equal probability, that is, in the case ofk degenerate minima, in assigning a weight
factor 1/k to each minimum. This statistics implicitly assumes that, after a transition period
of equilibration, each degenerate minimum is visited with even probability.
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For our particular choice of dynamics, however, the particle is not allowed to remain at
the same site for two consecutive timest andt + 1. As we already mentioned, this results in a
parity condition, namely that the particle occupies even sites at even times and odd sites at odd
times. Thus, even atT = 0, the particle has to fluctuate from odd to even sites. This is what
we called ‘residual fluctuations’, which in particular make barriers of height0 = 1 always
passable, even atT = 0, eventually leading to some equilibration between all the deepest
minima accessible by passing these0 = 1-barriers.

Another effect of these residual fluctuations is that, by preventing the particle to remain
seated right in the minima for all times, they create small corrections to the estimates of statistics
(3), in particular for the limiting values of the peaks atT → 0 of the quantitiesχ , Y2 and1x2.

As we will now discuss, these corrections are of two types: a parity correction and a wall
correction.

Parity correction. Let us consider a timet with a given parity, say even, so that the particle
is forced to occupy sites with the same parity. For a fixed landscape and a fixed0, it is clear
that all the degenerate deepest minima have a well-defined, common parity since returning
to the same height requires an even number of steps. This parity, however, may or may not
be that oft . If the two parities coincide, then the particle can fall atT → 0 precisely in the
minima and our calculations using statistics(3) are valid. If the two parities do not match, the
particle cannot fall right in the deepest minima, but will rather occupy the two neighbouring
positions on both sides of each minimum. In this case, rather than averaging the positionsx

(m)

min,
m = 1, . . . , k of thek minima with weights 1/k, we should average the positionsx(m)min ± 1
with weights 1/(2k) (of course, if two minima are distant by two elementary steps only, the
point in between should receive a weight 1/(2k) + 1/(2k) = 1/k). What is the probability for
the minima to have the wrong parity? Looking at, say, the closest minimum, we can select the
even minima by considering the combination(P (1)0 (z) + P (1)0 (−z))/2 and the odd minima by
considering(P (1)0 (z)−P (1)0 (−z))/2 instead. The probability for a minimum to be even or odd
is thus

Proba(even minima)= 1

2
(P (1)0 (1) + P (1)0 (−1)) = 0 + 2

20 + 3

Proba(odd minima)= 1

2
(P (1)0 (1)− P (1)0 (−1)) = 0 + 1

20 + 3
.

(A.1)

As far asx is concerned, it is clear that the parity shift creates no correction sincex
(m)

min is
precisely the average ofx(m)min− 1 andx(m)min + 1. Forx2, however, it results in a shift by a factor:

k∑
m=1

1

2k
((x

(m)

min − 1)2 + (x(m)min + 1)2)− 1

k
(x
(m)

min)
2 = 1 (A.2)

irrespective of the number of degenerate minima. For even times, we thus get a parity correction
tox2 equal to 1×(0+1)/(20+3). This correction is negligible at large0 but can be measured

at0 = 1, where it predicts a shift of25 to x2
(3)
(1). The same effect is more sensible forY2 and

1x2, and will be discussed in appendix B.

Wall correction. Another correction comes from the presence of the wall atx = 0 in the
particular case wherexmin = 0 itself is a minimum. This situation occurs with probability:

P (1)0 (0) =
1

0 + 2
. (A.3)



466 J Chave and E Guitter

Let us thus assume thatx(1)min = 0 is the first deepest minimum, together with(k − 1) other
minima at even positionsx(m)min, m = 2, . . . , k. Let us also assume thatt is even so that the
particle can sit precisely in these minima. Still, after equilibration, the minimum atx

(1)
min = 0

is less probable that the other minima. This effect is visible atT = 0 and0 = 1 where the
equilibration is due to residual fluctuations only.

2k-1

1

2k-1

2

2k-1

2

2k-1

1

1

E(x)

x

Weights at even times

Weights at odd times

Figure A1. The modified equilibrium weights fork degenerate minima at0 = 1 in the case of
a first minimum right at the wall. Each weight at even times is the average of the neighbouring
weights at odd times and conversely.

In this case (see figure A1), thek minima are at positionsx(m)min = 2m − 2. Since the
minimum atx(1)min has no accessible neighbour on its left, it is easy to see that, at even times,
this minimum is less probable that the others by a factor of two, leading to a probability
1/(2k− 1) for this minimum and a probability 2/(2k− 1) for the(k− 1) others, instead of an
equal probability 1/k for each minimum. The correction tox(3)(1) is thus:(

2

2k − 1
− 1

k

) k∑
m=2

(2m− 2) = k − 1

2k − 1
(A.4)

and that tox2
(3)
(1):(

2

2k − 1
− 1

k

) k∑
m=2

(2m− 2)2 = 2

3
(k − 1). (A.5)

According to (3.31) and (A.3), such a situation occurs with probability( 1
3)× ( 3

4)(
1
4)
k−1.

Combining the parity correction and the wall correction, we get

xcorr. = x(3)(1) +
1

3
×
∞∑
k=1

3

4

(
1

4

)k−1
k − 1

2k − 1
= 92− 3ln(3)

24
(A.6)

instead ofx(3)(1) = 11
3 , i.e. numerically 3.696 instead of 3.666, and

x2
corr. = x2

(3)
(1) +

2

5
× 1 +

1

3
×
∞∑
k=1

3

4

(
1

4

)k−1 2

3
(k − 1) = 4724

135
(A.7)

instead ofx2
(3)
(1) = 932

27 , i.e. numerically 34.99 instead of 34.52. With these values, the

estimateχ(3)1 = 0.069 78 is modified intoχcorr. = 0.067 33, i.e. is lowered by 3.5% only.
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1

k2k

11

2k

1

(ii)

(iii)

2k-1

1

2k-1

2

k

(i)

Figure A2. Respective weights of accessible minima at even times for0 = 1 in the three situations:
(i) the first minimum is right at the wall; (ii) the first minimum is at an odd position; (iii) the first
minimum is at an even position but not at the wall.

Appendix B. Computation of Y2 and ∆x2 in the limit T → 0

In this appendix, we will calculate the value of the peak atT → 0 and0 = 1 of Y2 and
1x2. These values are very sensitive to the residual fluctuations. We will thus follow the
same lines as in the previous appendix. We will consider even times and a situation withk

degenerate minima at positionsx(m)min = x(1)min + 2m − 2,m = 1, . . . , k. According to (3.31),
this situation occurs with probability34(

1
4)
k−1. We distinguish between three possibilities for

the first minimum:

(i) x(1)min = 0. According to (A.3), this occurs with probability13.

(ii) x(1)min is odd. According to (A.1), this occurs with probability2
5.

(iii) x(1)min is even and non-zero. This occurs with probability 1− 1
3 − 2

5 = 4
15.

The weights associated to the minima (or their neighbours) in the three situations are depicted
in figure B1. The corresponding contributions toY2 are(

1

2k − 1

)2

+ (k − 1)

(
2

2k − 1

)2

= 4k − 3

(2k − 1)2
in case (i)(

1

2k

)2

+ (k − 1)

(
1

k

)2

+

(
1

2k

)2

= 2k − 1

2k2
in case (ii)

k

(
1

k

)2

= 1

k
in case (iii).

(B.1)
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Combining these contributions with their respective weights, we get

Y2 =
∞∑
k=1

3

4

(
1

4

)k−1{1

3
× 4k − 3

(2k − 1)2
+

2

5
× 2k − 1

2k2
+

4

15
× 1

k

}
= 0.706 415. (B.2)

Similarly, the contributions to1x2 are

2

2k − 1

k∑
m=2

(2m− 2)2 −
(

2

2k − 1

k∑
m=2

(2m− 2)

)2

= 4k(k3− 2k2 + 2k − 1)

3(2k − 1)2
in case (i)

(B.3)

1

2k
(x
(1)
min − 1)2 +

1

k

k∑
m=2

(x
(1)
min + 2m− 3)2 +

1

2k
(x
(1)
min + 2k − 1)2

−
(

1

2k
(x
(1)
min − 1) +

1

k

k∑
m=2

(x
(1)
min + 2m− 3) +

1

2k
(x
(1)
min + 2k − 1)

)2

= k2 + 2

3
in case (ii) (B.4)

1

k

k∑
m=1

(x
(1)
min + 2m− 2)2 −

(
1

k

k∑
m=1

(x
(1)
min + 2m− 2)

)2

= k2 − 1

3
in case (iii). (B.5)

Combining these contributions with their respective weights, we get

1x2 =
∞∑
k=1

3

4

(
1

4

)k−1{1

3
× 4k(k3− 2k2 + 2k − 1)

3(2k − 1)2
+

2

5
× k

2 + 2

3
+

4

15
× k

2 − 1

3

}
= 0.789 288. (B.6)
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